首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: A novel aliphatic polycarbonate based on ketal protected dihydroxyacetone was synthesized by ring‐opening polymerization of cyclic carbonate monomer, 2,2‐ethylenedioxypropane‐1,3‐diol carbonate (EOPDC), in bulk. Effects of polymerization conditions such as catalysts, catalyst concentration, reaction temperature and reaction time on the polymerization were investigated. The polycarbonate obtained was characterized by GPC, FTIR, 1H NMR, 13C NMR and DSC. The study on in vitro degradation of PEOPDC shows that the degradation mainly results from surface erosion.

Synthesis of an aliphatic polycarbonate with a high molecular weight by ring‐opening polymerization of cyclic carbonate monomer EOPDC.  相似文献   


2.
Rare‐earth (Nd, Y) ptert‐butylcalix[n]arene (n = 4, 6, and 8) complexes without coligands were synthesized from rare‐earth isopropoxides in toluene. The products were characterized as the following structures: [C4(OH)O3 · CH3C6H5]Nd ( 4 ), [C6(OH)2O4 · CH3C6H5]3Ln4 [Ln = Nd ( 5 ), Y ( 6 )], and [C8(OH)2O6 · CH3C6H5]Nd2 ( 7 ). 2,2‐Dimethyl trimethylene carbonate (DTC) can be polymerized with complexes 4 – 7 alone as the initiator. PolyDTC (weight‐average molecular weight: 5700, polydispersity index: 1.11, measured by gel permeation chromatography) initiated by complex 5 was obtained with a conversion of 69.1% within 6 h in toluene at 80 °C. The thermal behavior of polyDTC has been compared with the published data. The DTC ring is opened via acyl‐oxygen bond cleavage with end‐group examination. NMR analyses of the polymerization reaction mixture indicated that the polymerization proceeds via a coordination‐insertion mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1390–1399, 2003  相似文献   

3.
A vinyl‐functionalized polyphosphate (PIOP) was synthesized by ring‐opening polymerization of 2‐isopropyl‐2‐oxo‐1,3,2‐dioxaphospholane and 2‐(2‐oxo‐1,3,2‐dioxaphosphoroyloxyethyl methacrylate) with triisobutylaluminum as an initiator. The number‐averaged molecular weight of the PIOP was 1.2 × 104. The average number of vinyl groups in the PIOP is 2.20. Transparent hydrogels were prepared by the radical polymerization of 2‐methacryroyloxyethyl phosphorylcholine with PIOP as a cross‐linking reagent. These hydrogels may have many applications in the biomedical field because of their biodegradability and biocompatibility.

Synthetic route of PIOP.  相似文献   


4.
A water‐soluble polycarbonate with dimethylamino pendant groups, poly(2‐dimethylaminotrimethylene carbonate) (PDMATC), is synthesized and characterized. First, the six‐membered carbonate monomer, 2‐dimethylaminotrimethylene carbonate (DMATC), is prepared via the cyclization reaction of 2‐(dimethylamino)propane‐1,3‐diol with triphosgene in the presence of triethylamine. Although the attempted ring‐opening polymerization (ROP) of DMATC with Sn(Oct)2 as a catalyst fails, the ROP of DMATC is successfully carried out with Novozym‐435 as a catalyst to give water‐soluble aliphatic polycarbonate PDMATC with low cytotoxicity and good degradability.  相似文献   

5.
Ring‐opening polymerization (ROP) of monofunctional neopentylglycol carbonate (NPGC) with or without bifunctional di(trimethylolpropane) carbonate (DTMPC), which are derived from available corresponding alcohols, affords linear polycarbonates or covalently‐linked polycarbonate networks, respectively. A series of available ethanol amine derivatives having the different numbers of 2‐hydroxylethyl arms (N,N,N’,N’‐tetrakis(2‐hydroxyethyl)ethylenediamine, triethanolamine, N‐methyldiethanolamine or N,N‐dimethylethanolamine) initiates the ROP of NPGC to afford star‐shaped, telechelic, or linear polycarbonates bearing tertiary amines with well‐controlled molecular weights and relatively narrow polydispersities Furthermore, the copolymerization of NPGC and DTMPC in the presence of these initiators readily gives tertiary amine‐modified polycarbonate films with well transparency and flexibility. These amino groups are easily converted to ammonium salts by protonation with acids, while the quaternization with benzyl bromide is strongly affected by the steric hindrance of these amines. N‐Methyldiethanolamine or N,N‐dimethylethanolamine residues in these films react easily with benzyl bromide to give quaternary ammonium salt‐functionalized films. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 487–497  相似文献   

6.
Summary: A novel type of glycerol‐derived, water‐soluble polycarbonate with pendant, primary hydroxyl groups was prepared from 2‐(2‐benzyloxyethoxy)trimethylene carbonate (BETC). Ring‐opening polymerization of BETC and 2,2‐dimethyltrimethylene carbonate (DTC) gave narrow distribution of homopolymers or random copolymers with high molecular weights. The protecting benzyl groups were removed by catalyzed hydrogenation at atmosphere H2 pressure to give hydroxyl polycarbonates without observable changes on the polymer backbone and molecular weight distribution. The hydrophilicity of the copolymers increases with the increase in the hydrophilic glycerol‐derived carbonate content.

Synthesis of the glycerol‐derived polycarbonate.  相似文献   


7.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

8.
To mediate selective gene delivery to hepatocytes via the asialoglycoprotein receptors (ASGP‐Rs), we designed and synthesized well‐defined and narrowly dispersed galactose‐ and glucose‐functionalized cationic polycarbonate diblock copolymers (designated as Gal‐APC and Glu‐APC, respectively) using organocatalytic ring‐opening polymerization of functionalized carbonate monomers, with a subsequent quaternization step using bis‐tertiary amines to confer quaternary and tertiary amines for DNA binding and endosomal buffering, respectively. The sugar‐functionalized diblock copolymers effectively bound and condensed DNA to form positively charged nanoparticles (<100 nm in diameter and ≈30 mV zeta‐potential) that were stable under high physiological salt conditions. In comparison to the control Glu‐APC/DNA complexes, Gal‐APC/DNA complexes mediated significantly higher gene expression in ASGP‐R positive HepG2 cells with no significant difference observed in ASGP‐R negative HeLa cells. The co‐incubation of Gal‐APC/DNA complexes with a natural ASGP‐R ligand effectively led to a decrease in gene expression, hence providing evidence for the ASGP‐R mediated endocytosis of the polyplexes. Importantly, the Gal‐APC/DNA complexes induced minimal cytotoxicities in HepG2 cells at the N/P ratios tested. Taken together, the galactose‐functionalized cationic polycarbonate diblock copolymer has potential for use as a non‐viral gene vector for the targeted delivery of therapeutic genes to hepatocytes in the treatment of liver diseases.

  相似文献   


9.
The synthesis of a new cyclic carbonate monomer containing an allyl group was reported and its biodegradable amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MAC)] was synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC) in the presence of poly (ethylene glycol) as a macroinitiator, with diethyl zinc as a catalyst. 13C NMR and 1H NMR were used for microstructure identification of the copolymers. The copolymer could form micelles in aqueous solution. The core of the micelles is built of the hydrophobic P(LA‐co‐MAC) chains, whereas the shell is set up by the hydrophilic PEG blocks. The micelles exhibited a homogeneous spherical morphology and unimodal size distribution. By using the cyclic carbonate monomer containing allyl side‐groups, crosslinking of the PEG‐b‐P(LA‐co‐MAC) inner core was possible. The adhesion and spreading of ECV‐304 cells on the copolymer were better than that on PLA films. Therefore, this biodegradable amphiphilic block copolymer is expected to be used as a biomaterial for drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5518–5528, 2007  相似文献   

10.
Microwave‐assisted ring‐opening polymerization (MROP) of trimethylene carbonate in the presence of 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim]BF4) ionic liquid was investigated. In the presence of 5 wt % [bmim]BF4, poly (trimethylene carbonate) (PTMC) with a number‐average molar mass (Mn) of 36,400 g/mol was obtained at 5 W for only 60 min. The Mn of PTMC synthesized in the presence of [bmim]BF4 was much higher than that produced in bulk at the same reaction time. In addition, compared with those produced by conventional heating, the Mn of PTMC and monomer conversion by MROP with or without [bmim]BF4 were both higher. Thermal properties of the resulting PTMC were characterized by differential scanning calorimetry. Under microwave irradiation in the presence of ionic liquid, the polymerization could be carried out efficiently and effectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5857–5863, 2007  相似文献   

11.
Lipase‐catalyzed ring‐opening bulk polymerizations of 6(S)‐methyl‐morpholine‐2,5‐dione (MMD) were investigated. Selected commercial lipases were screened as catalysts for MMD polymerization at 100 °C. Polymerizations catalyzed with 10 wt % porcine pancreatic lipase type II crude (PPL), lipase from Pseudomonas cepacia, and lipase type VII from Candida rugosa resulted in MMD conversions of about 75% in 3 days and in molecular weights ranging from 8200 to 12,100. Poly(6‐methyl‐morpholine‐2,5‐dione) [poly(MMD)] had a carboxylic acid group at one end and a hydroxyl group at the other end. However, lipase from Mucor javanicus showed lower catalytic activity for the polymerization. During the polymerization, racemization of the lactate residue took place. PPL was selected for further studies. The rate of polymerization increased with increasing PPL concentration under otherwise identical conditions. When the PPL concentration was 5 or 10 wt % with respect to MMD, a conversion of about 70% was reached after 6 days or 1 day, respectively, whereas for a PPL concentration of 1 wt %, the conversion was less than 20% even after 6 days. High concentrations of PPL (10 wt %) resulted in high number‐average molecular weights (<3 days); with a lower concentration of PPL, lower molecular weight poly(MMD) was obtained. The concentration of water was an important factor that controlled not only the conversion but also the molecular weight. With increasing water content, enhanced polymerization rates were achieved, whereas the molecular weight of poly(MMD) decreased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3030–3039, 2005  相似文献   

12.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

13.
Allyl ether‐functional polycarbonates, synthesized by organocatalytic ring‐opening polymerization of the six‐membered cyclic carbonate monomer 2‐allyloxymethyl‐2‐ethyltrimethylene carbonate, were used to prepare non‐polyether polymer electrolytes. UV‐crosslinking of the allyl side groups provided mechanically stable electrolytes with improved molecular flexibility—Tg below ?20 °C—and higher ionic conductivity—up to 4.3 × 10?7 S/cm at 25 °C and 5.2 × 10?6 S/cm at 60 °C—due to the plasticizing properties of the allyl ether side groups. The electrolyte function was additionally demonstrated in thin‐film Li battery cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2128–2135  相似文献   

14.
The ring‐opening polymerization (ROP) of β‐butyrolactone (β‐BL) has been studied using the organocatalysts of diphenyl phosphate (DPP) and bis(4‐nitrophenyl) phosphate (BNPP). The controlled ROP of β‐BL was achieved using BNPP, whereas that of using DPP was insufficient because of its low acidity. For the BNPP‐catalyzed ROP of β‐BL, the dual activation property for β‐BL and the chain‐end models of poly(β‐butyrolactone) (PBL) were confirmed by NMR measurements. The optimized polymerization condition for the ROP of β‐BL proceeded through an O‐acyl cleavage to produce the well‐defined PBLs with molecular weights up to 10,650 g mol?1 and relatively narrow polydispersities of 1.19–1.39. Functional initiators were utilized for producing the end‐functionalized PBLs with the ethynyl, maleimide, pentafluorophenyl, methacryloyl, and styryl groups. Additionally, the diblock copolymers consisting of the PBL segment with the polyester or polycarbonate segments were prepared by the BNPP‐catalyzed ROPs of ε‐caprolactone or trimethylene carbonate without quenching. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2032–2039  相似文献   

15.
A novel biodegradable amphiphilic copolymer with hydrophobic poly(ε‐caprolactone) branches containing cholic acid moiety and a hydrophilic poly(ethylene glycol) chain was synthesized. The copolymer was characterized by FTIR, 1H NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), polarizing light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) analysis. The amphiphilic copolymer could self‐assemble into micelles in an aqueous solution. The critical micelle concentration of the amphiphilic copolymer was determined by fluorescence spectroscopy. A nanoparticle drug delivery system with a regularly spherical shape was prepared with high encapsulation efficiency. The in vitro drug release from the drug‐loaded polymeric nanoparticles was investigated. Because of the branched structure of the hydrophobic part of the copolymer and the relatively fast degradation rate of the copolymer, an improved release behavior was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5256–5265, 2007  相似文献   

16.
A novel amine‐functionalized polycarbonate was synthesized and its excellent gene transfection ability in vitro is demonstrated. In the framework of adapting the cationic polycarbonate for in vivo gene delivery applications, here the design and synthesis of biodegradable block copolymers of poly(ethylene glycol) (PEG) and amine‐functionalized polycarbonate with a well‐defined molecular architecture and molecular weight is achieved by metal‐free organocatalytic ring‐opening polymerization. Copolymers in triblock cationic polycarbonate‐block‐PEG‐block‐cationic polycarbonate and diblock PEG‐block‐cationic polycarbonate configurations, in comparison with a non‐PEGylated cationic polycarbonate control, are investigated for their influence on key aspects of gene delivery. Among the polymers with similar molecular weights and N content, the triblock copolymer exhibit more favorable physicochemical (i.e., DNA binding, size, zeta‐potential, and in vitro stability) and biological (i.e., cellular uptake and luciferase reporter gene expression) properties. Importantly, the various cationic polycarbonate/DNA complexes are biocompatible, inducing minimal cytotoxicities and hemolysis. These results suggest that the triblock copolymer is a more useful architecture in future cationic polymer designs for successful systemic therapeutic applications.  相似文献   

17.
The ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) using imidodiphosphoric acid (IDPA) as the organocatalyst and benzyl alcohol (BnOH) as the initiator has been investigated. The polymerization proceeded without decarboxylation to afford poly(trimethylene carbonate) (PTMiC) with controlled molecular weight and narrow polydispersity. 1H NMR, SEC, and MALDI‐TOF MS measurements of the obtained PTMC clearly indicated the quantitative incorporation of the initiator at the chain end. The controlled/living nature for the IDPA‐catalyzed ROP of TMC was confirmed by the kinetic and chain extension experiments. A bifunctional activation mechanism was proposed for IDPA catalysis based on NMR and FTIR studies. Additionally, 1,3‐propanediol, 1,1,1‐trimethylolpropane, and pentaerythritol were used as di‐ol, tri‐, and tetra‐ol initiators, producing the telechelic or star‐shaped polycarbonates with narrow polydispersity indices. The well‐defined diblock copolymers, poly(trimethylene carbonate)‐block‐poly(δ‐valerolactone) and poly(trimethylene carbonate)‐block‐poly(ε‐caprolactone), have been successfully synthesized by using the IDPA catalysis system. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1009–1019  相似文献   

18.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Anionic ring‐opening polymerizations of methyl 4,6‐O‐benzylidene‐2,3‐O‐carbonyl‐α‐D ‐glucopyranoside (MBCG) were investigated using various anionic polymerization initiators. Polymerizations of the cyclic carbonate readily proceeded by using highly active initiators such as n‐butyllithium, lithium tert‐butoxide, sodium tert‐butoxide, potassium tert‐butoxide, and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene, whereas it did not proceed by using N,N‐dimethyl‐4‐aminopyridine and pyridine as initiators. In a polymerization of MBCG (1.0 M), 99% of MBCG was converted within 30 s to give the corresponding polymer with number‐averaged molecular weight (Mn) of 16,000. However, the Mn of the polymer decreased to 7500 when the polymerization time was prolonged to 24 h. It is because a backbiting reaction might occur under the polymerization conditions. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The synthesis of poly(trimethylene carbonate) via carbene catalyzed ring‐opening polymerization (ROP) was investigated. The N‐heterocyclic carbenes were protected as CO2‐adducts to improve their handling (e.g., carbene generation without base). The influence of catalyst structure, different solvents and microwave radiation on conversion, molecular weight and end groups was investigated to gain an insight into the reaction mechanism. Different NHC structures were investigated for their catalytic activity toward the ROP of trimethylene carbonate. The analytic studies were performed by using NMR spectroscopy, SEC and ESI‐IMS mass spectrometry. It was found that the reaction can be performed in acetonitrile, toluene, THF and CH2Cl2. Synthesis in CH2Cl2 allows the best control over the resulting polymer with regards to polydispersity and molecular weight. Microwave radiation accelerates the reaction at 80 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 820–829  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号