首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of polarization‐sensitive (PS) coherent anti‐Stokes Raman scattering (CARS) spectroscopy for the investigation of highly luminescent free‐base porphyrins under Qx band resonance is discussed. For coproporphyrin I tetramethyl ester (CP‐I‐TME), PS CARS spectra involving resonances with the electronic Qx absorption band as well as polarized spontaneous Raman spectra involving B band resonance are presented. A quantitative evaluation of the CP‐I‐TME spectra is performed and the results are compared to our previously presented data on free‐base octaethylporphine (OEP) and mesoporphyrin IX dimethyl ester (MP‐IX‐DME), which were obtained under identical excitation conditions. This comprehensive analysis reveals several spectral differences that can be attributed to the different β–substitution pattern of the porphyrin macrocycle. Additionally, the strong resonance enhancement of totally symmetric modes under Qx band excitation is identified as a common property for OEP, CP‐I‐TME, and MP‐IX‐DME; this enhancement selectivity distinguishes the investigated substances from what is generally observed for metallo porphyrins. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Resonance Raman spectra were obtained for formanilide (FA) in acetonitrile solution with 239.5‐ and 245.9‐nm excitation wavelengths in resonance with the S3 state, and density functional theory (DFT) was used to elucidate the electronic transitions and resonance Raman spectra of FA. The spectra indicate that, in the Franck–Condon region, photodissociation dynamics has a multidimensional character with the motions mainly along the CO stretching υ8, the ring CC stretch υ9, the NH wag and ring CCH in‐plane bend υ11, the NH wag and ring CCH in‐plane bend υ12, ring CC stretch and ring CCH in‐plane bend υ16, the NH wag and ring CCH in‐plane bend υ17, the ring CCH in‐plane bend υ18, and the ring trigonal bend υ24. The excited‐state dynamics of the S3 state is discussed, and the results are compared with those previously reported for benzamide (BA) to examine the N‐ or C‐terminal‐substituted aromatic effect of the peptide bond. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
李艳荣  王云平 《中国物理 B》2009,18(8):3444-3448
A new kind of quantum interference between Raman scattering and single-photon absorption is predicted theoretically, which gives an expanded view of quantum interference. Its potential application is also proposed.  相似文献   

5.
费米共振是分子内和分子间发生的基团间的振动耦合和能量转移现象。有关外场中费米共振的认识、拉曼光谱的研究方法及应用均待开发和推广。本文系统阐述了利用高压DAC技术、变温技术特别是课题组独创的变换溶剂浓度、LCOF等方法获得的有关费米共振的研究成果,即分子场、压力场、温度场等外场对分子内和分子间费米共振的影响:(1)分子场中a.由C_5H_5N在CH_3OH和H_2O中拉曼光谱变化研究表明溶剂效应对费米共振有明显影响;b.通过改变溶液浓度发现了其他方法未能发现的费米共振双线对非对称移动及双线对中倍频的基频亦受费米共振调谐的现象;c.溶液中的氢键、反氢键使分子基团重组而对费米共振产生显著影响;d.C_7H_8和m-C_8H_(105分子间发生会费米共振,且费米共振特性随溶液浓度明显改变;(2)压力场中a.随压强增加谱线蓝移,且频差△随压强改变而引起W改变;b.随压强增加CCl_4在C_6H_6中的v_1+v_4~v_3的W减小速度比纯液体中快,费米共振消失提前。这表明,压强引起的费米共振现象可揭示溶剂效应机理;(3)温度场中温度会影响分子费米共振特性,且对不同分子影响亦不同,温度对CO_2的费米共振影响较大,而对CS_2几乎无影响。本文对分子谱线的认证与归属、分子构象的确定及异构体的鉴别、氢键对分子结构与性质的影响等方面的研究提供了系统的理论与实验依据。  相似文献   

6.
Dimethyl 1,3‐dithiole‐2‐thione‐4,5‐dicarboxylate (DDTD) was synthesized and characterized using NMR, Fourier transform (FT)‐Raman, Fourier transform‐infrared (FT‐IR) and UV spectroscopies. Resonance Raman spectra (RRs) were obtained with 341.5, 354.7 and 368.9 nm excitation wavelengths and density functional calculations were carried out to elucidate the π (S C S) →π* (S C S) electronic transitions and the RRs of DDTD in cyclohexane solution. The RRs indicate that the Franck–Condon region photo dynamics have a multidimensional character with motion predominantly along the CS stretch and the C S symmetric stretch modes in the five‐member heterocycle. A preliminary resonance Raman intensity analysis was carried out and the results for DDTD were compared with previously reported results for 1,3‐dithiole‐2‐thione (DTT). Differences and similarities of the spectra in terms of molecular symmetry and electron density are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A‐ and B‐band resonance Raman spectra were acquired for ethylene trithiocarbonate in cyclohexane solution. The results indicate that the S3 state structural dynamics is mostly along vibrational motions of the CS stretch υ11, while the S4 state one has motions mainly via the S C S symmetric stretch υ18, CS stretch υ11, and the H C H rock + S C S antisymmetric stretch υ14 reaction coordinates. The very different excited state structural dynamics were briefly discussed in terms of vibronic couplings using local symmetry point group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We demonstrate that Raman spectroscopy is able to discriminate between cross‐conjugated (CC) and pseudo‐cross‐conjugated mesomeric betaines (PCCMBs) by means of key bands sensitive to conjugation. As targets, we have selected the PCCMB 2,5 dimethyl‐1‐phenylpyrazolium‐3‐carboxylate and its isomer the CCMB 1,3‐dimethyl‐2‐phenylpyrazolium‐4 carboxylate. Structurally, they differ only in the position of the carboxylate group bonded to the pyrazolium ring. However, this feature provides different conjugational character. We provide evidences for the fact that this structural difference has a measurable impact in the vibrational wavenumbers as Raman spectroscopy can directly account for it. We also prove that the observed Raman features are not only originated by the kinetic effect caused by the change of the carboxylate position, but this atomic re‐organization also modifies the potential energy of the molecule. This energy directly depends on the electronic structure, which determines the pseudo‐cross‐conjugation character. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The FT‐IR and FT‐Raman spectra of anilinium sulfate were recorded and analyzed. The surface‐enhanced Raman scattering (SERS) was recorded from a silver electrode. The vibrational wavenumbers of the compound have been computed using the Hartree‐Fock/6‐31G* basis and compared with the experimental values. The molecule is adsorbed on the silver surface with the benzene ring in a tilted orientation. The presence of amino and sulfate group vibrations in the SERS spectrum reveal the interaction between amino and sulfate groups with the silver surface. The direction of the charge transfer contribution to SERS has been discussed from the frontier orbital theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectroscopy, in principle, is an excellent technique for the study of molecular species developed on metal surfaces during electrochemical investigations. However, the use of the more common laser wavelengths such as the 514.5‐nm line results in spectra of less than optimal intensity, particularly for iron oxide compounds. In the present work, near‐resonance enhancement of the Raman spectra was investigated for the iron oxide and iron oxyhydroxide compounds previously reported to be present in the passive film on iron, using a tuneable dye laser producing excitation wavelengths between 560 and 637 nm. These compounds were hematite (α‐Fe2O3), maghemite (γ‐Fe2O3), magnetite (Fe3O4), goethite (α‐FeOOH), akaganeite (β‐FeOOH), lepidocrocite (γ‐FeOOH) and feroxyhyte (δ‐FeOOH). Optimum enhancement, when compared to that with the 514.5‐nm line, was obtained for all the iron oxide and oxyhydroxide standard samples in the low wavenumber region (<1000 cm−1) using an excitation wavelength of 636.4 nm. Particularly significant enhancement was obtained for lepidocrocite, hematite and goethite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Aptamers are single‐stranded oligonucleotides that selectively bind to their target molecules owing to their ability to form secondary structures and shapes. The 15‐mer (5′‐GGTTGGTGTGGTTGG‐3′) DNA thrombin‐binding aptamer (TBA) binds to thrombin following the formation of a quadruplex structure via the Hoogsten‐type G–G interactions. In the present study, Raman and SERS spectra of TBA and thiolated TBA (used to facilitate covalent bonding to metal nanoparticle) in different conditions are investigated. The spectra of the two analogs exhibit vibrations, such as the C8N7 H2 deformation band at ∼1480 cm−1 of the guanine tetrad, that are characteristic of the quadruplex structure in the presence of K+ ions or at low temperature. Interestingly, SERS spectra of the two analogs differ markedly from their respective normal Raman spectra, possibly due to changes in the conformation of the aptamer upon binding, as well as to the specific interaction of individual vibrational modes with the metal surface. In addition, the SERS spectra of the thiolated aptamer show significant changes with different concentrations, which may be due to different orientation of the molecule with respect to the metal surface. This study provides useful information for the development of label‐free aptamer‐based SERS sensors and assays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Although conventional Raman, surface‐enhanced Raman (SERS) and tip‐enhanced Raman spectroscopy (TERS) have been known for a long time, a direct, thorough comparison of these three methods has never been carried out. In this paper, spectra that were obtained by conventional Raman, SERS (on gold and silver substrates) and TERS (in ‘gap mode’ with silver tips and gold substrates) are compared to learn from their differences and similarities. Because the investigation of biological samples by TERS has recently become a hot topic, this work focuses on biologically relevant substances. Starting from the TER spectra of bovine serum albumin as an example for a protein, the dipeptides Phe–Phe and Tyr–Tyr and the tripeptide Tyr–Tyr–Tyr were investigated. The major findings were as follows. (1) We show that the widely used assumption that spectral bands do not shift when comparing SER, TER and conventional Raman spectra (except due to binding to the metal surface in SERS or TERS) is valid. However, band intensity ratios can differ significantly between these three methods. (2) Marker bands can be assigned, which should allow one to identify and localize proteins in complex biological environments in future investigations. From our results, general guidelines for the interpretation of TER spectra are proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The resonance Raman spectroscopy in conjunction with the density functional theory calculations were used to study the excited state structural dynamics of 2‐mercapto‐1‐methylimidazole (MMI). The experimental UV absorption bands were assigned according to the time‐dependent density functional calculations. The vibrational assignments were done for the A‐band resonance Raman spectra of MMI in water and acetonitrile on the basis of the Fourier transform infrared (FT‐IR) and FT‐Raman measurements in solid, in water and in acetonitrile and the corresponding B3LYP/6‐311+G(d, p) computations. The dynamic structures of MMI were obtained by analysis of the resonance Raman intensity pattern and normal mode analysis. The differences in the dynamic structures of MMI and thiourea were revealed and explained. The structural dynamic of MMI was found to be similar to that of 2‐thiopyrimidone in terms of major reaction coordinates and thus favored the intra‐molecular proton transfer reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Polarized Raman spectroscopy was used to investigate the room‐temperature phonon characteristics of a series of rare‐earth arsenate (REAsO4, RE = Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) single crystals. The Raman data were interpreted in a systematic manner based on the known tetragonal zircon structure of these compounds, and assignments and correlations were made for the observed bands. We found that the wavenumbers of the internal modes of the AsO4 tetrahedron increased with increasing atomic number. This increase seems to be correlated to the contraction of the RE–O bond length. For three out of four lattice wavenumbers observed, this tendency was not nearly so marked as in the case of the internal mode wavenumber. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The objective of this study was to investigate the effect of pressure and/or temperature on the polymorphic transformation of famotidine from form B to form A by using a thermal confocal Raman microspectroscopy. A compact with a wide transparent zone in the center and an opaque zone surrounding it was prepared by compressing a conical mass of famotidine form B. Two unique Raman peaks at 2897 and 2920 cm−1 for famotidine forms B and A, respectively, were used as markers. The result indicates that the opaque zone in each compact was composed of famotidine from B, and it did not undergo any polymorphic transformation by preparing with higher compression pressure and/or by heating. The Raman peak intensity ratio of the 2920 cm−1 and 2897 cm−1 bands markedly increased starting from 120 °C for the transparent zone prepared by compressing with 19.61 × 104 kPa pressure, but increased from 100 °C with 49.03 × 104 kPa pressure, indicating the occurrence of thermally induced polymorphic transformation of famotidine from form B to form A. However, the transparent zone prepared by 9.81 × 104 kPa compression pressure retained the same Raman spectrum as that of the famotidine form B, revealing that the thermally induced polymorphic transformation of famotidine was dependent on the pressure applied. There was no polymorphic transformation of famotidine in the transparent zone when it was prepared by a higher compression pressure at a lower temperature or by a lower pressure at a higher temperature. The combined effect of compression and temperature was found to accelerate the polymorphic transformation from form B to form A in the transparent zone of famotidine. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, a detailed study of the structural, electronic, and absorption properties of crystalline 7,2′‐anhydro‐β‐d ‐arabinosylorotidine (Cyclo ara‐O) in the pressure range of 0–350 GPa is performed by density functional theory calculations. The detail analysis of the crystal with increasing pressure shows that complex transformations occur in Cyclo ara‐O under compression. In addition, the b‐direction is much stiffer than the a‐ and c‐axis at 0–330 GPa, suggesting that the Cyclo ara‐O crystal is anisotropic in the certain pressure region. In the pressure range of 110–290 GPa, repeated formations and disconnections of covalent bonds in O7–O6* and C3–C6* occur several times, resulting in a new six‐atom ring that forms at 220, 270, and 290 GPa, while a five‐atom ring and seven‐atom ring form between two adjacent molecules at 300 and 340 GPa, respectively. Then, the analysis of the band gap and DOS (PDOS) of Cyclo ara‐O indicates that its electronic character has changed at 300 GPa into an excellent insulator, but the electron transition is much easier at 350 GPa. Moreover, the relatively high optical activity with the pressure increases of Cyclo ara‐O is seen from the absorption spectra, and two obvious structural transformations are also observed at 180 and 230 GPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, experimental and theoretical vibrational spectral results of the molecular structures of 6,8‐dichloroflavone (6,8‐dcf) and 6,8‐dibromoflavone (6,8‐dbf) are presented. The FT‐IR and FT‐Raman spectra of the compounds have been recorded together between 4000 and 400 cm−1 and 3500–5 cm−1 regions, respectively. The molecular geometry and vibrational wavenumbers of 6,8‐dcf and 6,8‐dbf in their ground state have been calculated by using DFT/B3LYP functional, with 6‐31 + + G(d,p) basis set used in calculations. All calculations were performed with Gaussian03 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Scale factors have been used in order to compare how the calculated and experimental data are in agreement. Theoretical infrared intensities are also reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
许镇潮  侯清玉 《物理学报》2015,64(15):157101-157101
目前, 当Ag掺杂ZnO摩尔数为0.0208-0.0278的范围内, Ag掺杂对ZnO吸收光谱影响的实验研究均有文献报道, 但是, 有两种不同的实验结果, 掺杂体系吸收光谱红移或蓝移两种相悖的报道. 为了解决本问题, 本文采用自旋密度泛函理论(DFT)框架下的广义梯度近似(GGA+U)平面波赝势方法, 构建三种Zn1-xAgxO (x=0, x=0.0278, x=0.0417)模型, 分别对所有模型进行几何结构优化和能量计算. 结果表明, 与纯的ZnO布居值和Zn-O的键长相比, 掺杂体系布居值减小、Ag-O键长增加、共价键减弱、离子键增强. 当Ag掺杂ZnO摩尔数为0.0278-0.0417的范围内, Ag掺杂量越增加、O原子2p轨道、Zn原子的4s, 3d轨道电荷数不变、Ag原子的5s轨道电荷数越增加、Ag原子的4d轨道电荷数越减小、掺杂体系晶格常数越增加、体积越增加、总能量越增加、稳定性越下降、形成能越下降、掺杂越难、掺杂体系的带隙越变窄、吸收光谱红移越显著. 计算结果与实验结果相一致. 并且合理解释了存在的问题. 这对设计和制备Ag掺杂ZnO体系的光催化剂有一定的理论指导作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号