首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In:Fe:Cu:LiNbO3 crystals with reduced/oxidized treatments were prepared by the Czochralski method. The defect structure was analyzed by the UV‐Visible absorption spectra. The blue photorefractive properties, such as the refractive index change, response time, recording sensitivity, dynamic range as well as two‐wave coupling gain coefficient, were also investigated at 488 nm wavelength using the two‐wave coupling experiment. Comparing the as‐grown and oxidized In:Fe:Cu:LiNbO3 crystals, the reduced sample has the highest recording sensitivity and largest dynamic range. Meanwhile, the high diffraction efficiency is still maintained. Experimental results definitely show that reduction treatment is an effective method to improve the blue photorefractive performance of In:Fe:Cu:LiNbO3 crystals. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Mg:Ru:Fe:LiNbO3 crystals with various doping concentration of MgO have been grown by Czochralski method. The type of charge carriers and photorefractive properties in Mg:Ru:Fe:LiNbO3 crystals were measured by two‐wave coupling method using Kr+ laser (476 nm) and He‐Ne laser (633 nm) as light sources. We found that holes were the dominant charge carriers under blue light irradiation while electrons were the dominant charge carriers under red light irradiation. Mg2+ ions behaved no longer as damage resistant, but promoter to the photorefractive properties at 476 nm wavelength. The photorefractive properties under blue light improved with the increase concentration of Mg2+ ions. The enhancement mechanisms of the blue photorefractive were suggested. Experimental results definitely showed that Mg‐doped two‐centre Ru:Fe:LiNbO3 was a promising blue photorefraction material for holographic volume storage.  相似文献   

3.
Hf(2mol%):Fe(0.05wt%):LiNbO3 crystals with various [Li]/[Nb] ratios of 0.94, 1.05, 1.2 and 1.38 have been grown. The photorefractive resistant ability increases with the accretion of [Li]/[Nb] ratio. When the ratio of [Li]/[Nb] is 1.20 or 1.38, the OH absorption band shifts to about 3477cm‐1. The mechanisms of the photorefractive resistant ability increase and the absorption band shift have been discussed. The exponential gain coefficient (Γ) of the crystals was measured with two‐beam coupling method and the effective charge carrier concentration (Neff) was calculated. The results show that Γ and Neff increase with the accretion of [Li]/[Nb] ratio. The temperature effect of codoped Hf:Fe:LiNbO3 crystals was also studied, it was found that the exponential gain coefficient increase dramatically at about 55°C, 70°C and 110°C, this is due to the inner electric field which is resulted from structure phase change. (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Cu:LiNbO3 crystal and Fe:Cu:LiNbO3 crystals were grown by the Czochralski method from congruent melt. The OH absorption spectrum of doped lithium niobate crystals was measured. The photorefractive properties of doped crystals were studied by the two‐wave coupling method. The results of the two‐wave coupling experiments showed that as the concentration of doping ions increased, the diffraction efficiency and the dynamic range enhanced, the holographic response time shortened. The recording time of Fe(0.10wt%): Cu(0.10wt%): LiNbO3 crystal is only a tenth of that of Cu(0.05wt%): LiNbO3 crystal. Among all samples, the dynamic range of the Fe(0.10wt%): Cu(0.10wt%): LiNbO3 crystal was the most largest (up to 40.78). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this paper, photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals were studied. The crystals doped with different concentration of Mg ions have been grown by the Czochralski method. Mg concentrations in grown crystals were analyzed by an inductively coupled plasma optical emission spectrometry (ICP‐OE/MS). The crystal structures were analyzed by the X‐ray powder diffraction (XRD), ultraviolet‐visible (UV‐Vis) absorption spectra and infrared (IR) transmitatance spectra. The photorefractive properties of crystals were experimentally studied by using two‐beam coupling. In this experiment we determined the writing time, maximum diffraction efficiency and the erasure time of crystals samples with He‐Ne laser. The results showed that the dynamic range (M/#), sensitivity (S) and diffraction efficiency (η) were dependent on the Mg doping concentration, and the Mg(4.58mol%):Ce:Cu:LiNbO3 crystal was the most proper holographic recording media material among the six crystals studied in the paper. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The pure congruent LiNbO3, Er:LiNbO3 and Zn,Er co‐doped Li‐rich LiNbO3 crystals were grown by Czochralski method. The X‐ray diffraction method and ultraviolet‐visible absorption spectra of the crystals were used to analyze the structure of the crystals. The photo‐damage ability resistance of the crystals was measured. The Zn,Er co‐doped Li‐rich LiNbO3 crystals show a decrease in lattice constant values, a shift in absorption edge of ultraviolet‐visible absorption spectra towards shorter wavelength, and three orders of magnitude increase in photo‐damage resistance compared to congruent LiNbO3 crystal. The intrinsic and extrinsic defects are discussed to explain the enhance of the photo‐damage ability resistance  相似文献   

7.
Congruent LiNbO3:Fe and LiNbO3:Mg,Fe crystals were grown by Czochralski method, and vapor transport equilibration technique was employed to improve the [Li]/[Nb] ratios of these crystals. The influence of stoichiometry and MgO dopant on the photorefractive sensitivity and response time of LiNbO3:Fe crystals was investigated. Both stoichiometry and MgO dopant can effectively reduce the amount of intrinsic defects, but MgO can also decrease the concentration of Fe2+ ions in Li‐sites. Near‐stoichiometric and MgO doped LiNbO3:Fe crystal has high photorefractive sensitivity and fast response time. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
1 mol%, 2 mol%, 3 mol%, 4 mol% and 5 mol% In3+ doped LiNbO3 crystals were grown by the Czochralski method, respectively. Oxidized treatment of some crystals was carried out. The infrared transmission spectra and photo‐damage resistance of the samples were measured. The results showed that the OH absorption peaks of In(3mol%):LiNbO3, In(4mol%):LiNbO3 and In(5mol%):LiNbO3 crystals were located at about 3508 cm‐1, while those of In(1mol%):LiNbO3 and In(2mol%):LiNbO3 crystals were located at about 3484cm‐1. When the doped In3+ concentration reached its threshold in LiNbO3 crystal, photo‐damage resistance of In:LiNbO3 crystals was two orders of magnitude higher than that of pure LiNbO3 crystal. The experimental results of the second harmonic generation (SHG) showed that the phase matching temperatures of In:LiNbO3 crystals were lower than those of Zn:LiNbO3 and Mg:LiNbO3 crystals and the SHG efficiency reached 38%. Oxidization treatment was also found to make the dark trace resistance of crystals increase. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Mg:Mn:Fe:LiNbO3 crystals were grown by the Czochralski method. The defect structure was analyzed by UV‐vis spectra and IR spectra. The holographic storage of Mg:Mn:Fe:LiNbO3 crystals was measured by the two color fixed method. The results show that with the increase of MgO doping concentration, the writing time becomes shorter, the dynamic range decreases, photorefractive sensitivity increases and fixing diffraction efficiency decreases. When the MgO doping concentration exceeds 4.5 mol%, the fixing diffraction efficiency approaches zero. The effect of doping Mg ions on the holographic storage properties of Mn:Fe:LiNbO3 crystals is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A series of lithium niobate (LiNbO3) crystals of congruent and stoichiometric compositions, doped with erbium, have been grown under non-steady-state thermal conditions. A series of LiNbO3:Zn crystals, nominally pure LiNbO3 crystals of congruent and stoichiometric compositions, and a LiNbO3:B crystal have also been grown. Both growth conditions and concentration dependences of physicochemical, ferroelectric, and structural characteristics of LiNbO3:Er crystals are investigated. The growth regular domain microstructures and periodic nanostructures in LiNbO3:Er crystals are analyzed by optical microscopy and atomic force microscopy (AFM). A comparative study of the optical homogeneity and photorefractive properties of LiNbO3:Er crystals of congruent and stoichiometric compositions and the Raman spectra of LiNbO3 crystals of different compositions is performed.  相似文献   

11.
Near‐stoichiometric LiNbO3 single crystal tri‐doped with ZrO2, MnO and Fe2O3 was grown from Li‐riched melt by Czochralski method. The defect structures and composition of these crystals were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of 3466 cm‐1 peak in infrared spectra showed that the crystal grown from Li‐riched melt was near stoichiometric. The photorefractive properties at the wavelength of 488 nm and 633 nm were investigated with two‐beam coupling experiment, respectively. The experimental results showed that the response speed and sensitivity were enhanced significantly and the high diffraction efficiency was obtained at 488 nm wavelength. This manifested that near‐stoichiometric LiNbO3:Mn:Fe:Zr crystal was an excellent candidate for holographic storage. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In the paper Ce:Cu:BSO crystal has been grown by Czochralski method for the first time with doping CeO2 and CuO into BSO(Bi12SiO20) crystal. The exponential gain coefficient and respond time of Ce:Cu:BSO crystal are measured by two‐wave‐coupling technology. The results indicate that exponential gain coefficient of Ce:Cu:BSO is more than two times as that of non‐doped BSO and the response time exhibits in microsecond level. Furthermore its exponential gain coefficient improves greatly compared with Ce:BSO's at the same doping level of Ce, while its response time is less than Ce:BSO's. The improvement mechanism of photorefractive effect of Ce:Cu:BSO crystal is investigated systematically. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Near‐stoichiometric Mn:Fe:LiNbO3 crystals doped with various concentration of ZrO2 were grown by top seed solution growth (TSSG) method in the air atmosphere. The Zr concentration in the crystal was determined by inductively coupled plasma optical emission spectrometer. The defect structures were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of vibration peak at 3466 cm‐1 in infrared spectra manifested that Li/Nb ratio in crystals approached to stoichiometric proportion. The fundamental absorption edge represented continuous red‐shift which was discrepancy with congruent doped LiNbO3 crystals showed that doping ions possessed different location mechanism. The light‐induced scattering of the doped stoichiometric LiNbO3crystals were quantitatively scaled via incident exposure energy. The results demonstrated that Zr(2 mol%):Mn:Fe:LiNbO3 crystal had the weakest light‐induced scattering and the mechanism related to their defect structures was discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Undoped, Cr doped and Mg, Cr codoped LiNbO3 crystals were grown by conventional Czochralski technique. Comparative study was carried out using Fourier transform infrared (FTIR) and UV‐Visible spectroscopy. Infrared optical absorption for OH ion has been used to study the effect of dopants on the crystals. The peak position of OH shift to 3535 cm‐1 for Mg, Cr codoped crystals compared to 3484 cm‐1 for undoped and Cr doped crystals. Prominent absorption bands are found in the visible region centered at 480 nm (20833 cm‐1) and 653 nm (15313 cm‐1) in Cr doped crystals. Whereas in Mg, Cr codoped crystals these broad absorption bands are red shifted to 517 nm (19342 cm‐1) and 678 nm (14749 cm‐1). UV cutoff in Cr doped crystals shift towards higher wavelength compared to undoped LiNbO3 crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Zr: LiNbO3 crystals has been grown. The crystal composition and phase are analyzed by X‐ray diffration. The optical damage resistance ability of Zr: LiNbO3 crystals is studied by the Sénarmont compensation method and the transmitted beam pattern distortion method. The saturated value of the birefringence change of 6 mol% Zr: LiNbO3 crystal is 1.01×10‐4, which is seven times smaller than that of congruent pure LiNbO3 crystal. The results of UV‐Visible and IR absorption spectra of Zr: LiNbO3 crystals powerfully confirm that the optical damage resistance threshold concentration of the Zr4+ ions doped in LiNbO3 crystals is about 6 mol% in the melt. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In:Zn:LiNbO3 crystals doped with different indium concentrations were grown by Czochralski technique. The optical damage threshold value and ultraviolet‐visible absorption spectra of the In:Zn:LiNbO3 crystals were measured. The In:Zn:LiNbO3 crystals were made into optical waveguide substrates using hexanedioic acid as proton exchange agent. The optical damage resistant ability of those optical waveguide substrates was investigated by the m‐line method. The optical damage threshold values of In(2mol.%):Zn(3mol.%):LiNbO3 crystal and optical waveguide substrate are two orders of magnitude higher than those of pure LiNbO3. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Lithium niobate (LiNbO3) crystals doped with Fe and Fe:Mn were grown by Czochralski technique. The doping concentrations of Fe and Mn were optimized. Transmission studies reveal broad absorption band centered at 488 nm. The UV cutoff observed for Fe doped LiNbO3 is 358 nm whereas for Fe:Mn codoped LiNbO3 is 352 nm. This decrease in UV cutoff for Fe and Mn codoped LiNbO3 compared to only Fe doped LiNbO3 is due to the increase in Li/Nb ratio. Optical homogeneity was assessed using conoscopy and birefringence interferometry. Dark and photo conductivity measurements prove that LiNbO3 is a negative photo conducting material. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Hf:Fe:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios ([Li]/[Nb]=0.94, 1.05, 1.20) in melt. The defect structure and location of doped ions were analyzed by the UV‐visible absorption spectra. The optical damage resistance of Hf:Fe:LiNbO3 crystals was investigated by the photoinduced birefringence change and the transmitted light spot distortion method. The results show that the optical damage resistance ability of Hf:Fe:LiNbO3 crystals decreases with the increase of the [Li]/[Nb] ratio. The dependence of the optical damage resistance of Hf:Fe:LiNbO3 crystals on the defect structure is discussed in detail. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The optical absorption spectra of LiNbO3 (LN), Fe:LiNbO3 (Fe:LN), and Zn:Fe:LiNbO3 (Zn:Fe:LN) single crystals grown by Bridgman method were measured and compared. The absorption characteristics of the samples and the effects of growth process conditions on the absorption spectra were investigated. The Fe, Zn and Li concentrations in the crystals were analyzed by inductively coupled plasma (ICP) spectrometry. The results indicated that the overall Fe ion and Fe2+ concentration in Fe:LN and Zn:Fe:LN crystals increased along the growing direction. The incorporation of ZnO in Fe:LN crystal induced increase of Fe2+ in the crystal. Among Fe‐doped and Zn:Fe‐codoped LN single crystals, 3 mol% ZnO doped Fe:LN had a biggest change of Fe2+ ion concentration from bottom to top part of crystal. The effects of technical conditions (atmosphere and thermal history) on Fe2+ ion concentration were discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The Er3+doped Mg:LiNbO3single crystal fibers employed in our experiment were grown in air by a micro‐pulling down (μ‐PD) method from host materials of a congruent Li/Nb (0.945) ratio which were melt‐doped with a nominal molar concentration of 1, 3, 5% MgO and 0.6% Er2O3. The X‐ray diffraction analysis results indicated that the co‐doped crystals main tained the same structural characteristics as the undoped LiNbO3, however the lattice parameters with Mg differed; c (Å) value decreased, and a (Å) increased than of pure LiNbO3. The influence of dopants on the photoluminescence (PL) properties of the Er:Mg:LiNbO3 single crystal fibers excited by laser lines of 514 nm was reported. Also, the PL properties according to temperature and the excitation power of Er:Mg:LiNbO3 crystal fibers were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号