首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用基于密度泛函理论的第一性原理方法,对新近发现的四方Mo2B在0~40 GPa压力范围内的物性进行了研究,研究内容包括弹性、各向异性、脆性延展性、硬度、理论强度、热容、热膨胀系数等基本物理性质.研究发现在0~40 GPa压力范围内,四方Mo2B晶体均满足力学稳定性条件,并且表现出较强的各向同性.同时发现该晶体具有较高的抗压缩能力,但抗剪切能力较差,抗压和抗剪切能力会随压力增加而增长.此外还发现四方Mo2B为韧性材料,且压力越大韧性越强.计算显示它的维氏硬度为14.3 GPa,限制其作为超硬材料的应用.通过应力-应变的计算发现其不同方向的理想拉伸及剪切强度都比较低.此外,还利用准谐德拜模型研究了四方Mo2B的热膨胀系数以及定容热容等热力学性质.  相似文献   

2.
复杂晶体硬度的理论和计算   总被引:1,自引:0,他引:1  
高发明 《人工晶体学报》2008,37(5):1136-1140
现有材料的硬度可用硬度计来测量.从理论上严格计算硬度值是一件困难的事情.但随着超硬材料理论设计的蓬勃发展,硬度的预测成为一个瓶颈问题.本文系统介绍了利用复杂晶体化学键理论计算晶体硬度的基本理论,以及关于纳米晶硬度的计算方法.利用第一性原理几何优化方法建立了新近合成的具有氧缺陷的四方BC2N相的晶体结构.利用硬度理论预测了它的硬度.结果表明该物质是一个超硬半导体材料.  相似文献   

3.
本文基于Si3 N4-Y2 O3-MgO液相烧结体系,系统研究了MgO含量和颗粒度对材料致密度、物相组成、显微结构以及力学性能的影响效果与作用机制.结果显示,MgO含量的增加,会使得液相组分增多,进而提高材料的致密度,同时促进β-Si3 N4晶粒的粗化生长;当液相含量相同但MgO颗粒度增大时,材料致密度和β-Si3 N4晶粒长径比会同时出现降低趋势.这表明,液相组分MgO的颗粒度会直接影响液相的形成与分布,进而对润湿、颗粒重排及传质过程产生作用.当MgO含量与颗粒度分别为4;和0.1μm时,材料相对密度、断裂韧性和维氏硬度获得最佳值,分别为99.5;±0.2;,(6.9±0.6)MPa·m1/2,(18.7±0.1)GPa.  相似文献   

4.
采用第一性原理方法,对比研究了Ti2AlC和Ti2AlN在高压下的结构、弹性和电子性质.结果表明,Ti2 AlC和Ti2AlN的品格常数a、c和体积V均随着外压的增大减小,但二者变化规律略有不同,都体现了材料的各向异性.通过对弹性常数、体模量、剪切模量、杨氏模量等弹性性质的分析,发现它们均随外压的增加而增大,并验证了Ti2AlC和Ti2AlN在0~50 GPa范围内的力学稳定性.此外,还从电子态密度的角度考察了Ti2AlC和Ti2AlN的电子性质,认为它们均具有共价键和金属键的双重特性,并发现在0 ~ 50 GPa范围内压力对态密度影响较小.本文计算结果与已有实验值和理论值吻合较好.  相似文献   

5.
研究了MgO-Al2O3-Re2O3(Re=Lu,Y)三元烧结助剂体系对无压烧结Si3N4陶瓷显微结构和力学性能的影响.研究结果表明,添加MgO-Al2O3-Lu2O3三元助剂制备的Si3N4陶瓷显微结构具有明显的双峰分布,晶粒较粗化,致密度、硬度、弯曲强度、断裂韧性分别为96.4;、14.59 GPa、964 MPa、7.64 MPa·m1/2;而添加MgO-Al2O3-Y2O3三元助剂制备的Si3N4陶瓷具有细化的显微结构,致密度、硬度、弯曲强度、断裂韧性分别为99.9;、15.29 GPa、758 MPa、6.60 MPa·m1/2.  相似文献   

6.
采用贋势平面波中的GGA和LDA两种近似方法分别计算立方相Ca2Ge在-6~8 GPa应力作用下的弹性特性、布局分析、电子结构和(100)面的电荷密度,分析应力作用下立方相Ca2Ge的结构稳定性.计算结果表明,当应力在-6~8 GPa范围,立方相Ca2Ge具有较好的力学稳定结构,体弹模量B、剪切模量G和杨氏模量E随应力的增加而增加,体弹模量B的增长呈线性增加,而剪切模量G和杨氏模量E的增长速率随应力的增加而减小.根据Pugh准则,当应力小于4 GPa时,立方相Ca2Ge表现为脆性,应力大于等于4 GPa时,表现为延性.根据布局分析结果,随着压力的增加,Ca原子4s态电子向3d态跃迁,立方相Ca2Ge化合物在较高压力下存在共价键,离子性降低.能带结构和态密度计算结果表明,应力在-4~8 GPa范围,带隙值随应力的增加而成线性降低,在-6~0 GPa应力下,Ca s态电子未参与成键,随着应力的增加,各电子态的能带线宽度增加,态密度的峰值宽度增加,表明电子云的重叠越大,电子间的成键强度加强.分析立方相Ca2Ge(100)面的电荷密度,得出(100)面上最大电荷密度值随应力的增加而减小,最小电荷密度值随应力的增加而增加,说明(100)面上电子局域性随应力的增加而降低,电子云的重叠程度随应力的增加而增大,电子轨道半径增大,成键强度增强.  相似文献   

7.
研究了二元助剂Al2O3-Re2O3(Re=La,Nd,Y,Lu)对无压烧结Si3N4陶瓷的相对密度、显微结构及力学性能的影响.结果表明:经1800℃无压烧结后,Si3N4陶瓷试样的相对密度均达到97;以上;以Al2O3-Lu2O3为烧结助剂的Si3N4陶瓷试样具有最高的维氏硬度和抗弯强度,分别为15.2±0.18 GPa和920±5 MPa.  相似文献   

8.
本文针对模具对陶瓷材料的要求,从提高陶瓷模具材料的综合力学性能出发,采用纳米复合方法制备出具有较高综合力学性能的纳米陶瓷模具材料.研究了纳米Ti(C7N3)和Y2O3的组分含量对纳米陶瓷模具材料微观结构和力学性能的影响,结果表明添加纳米Ti(C7N3)和Y2O3的氧化锆纳米陶瓷模具材料的力学性能优于纯氧化锆陶瓷材料,纳米颗粒的添加改善了材料的微观结构和力学性能.当纳米Ti(C7N3)和Y2O3的添加量分别为17.15vol;和5 mol;时,材料的综合性能最好,其抗弯强度为814MPa、断裂韧性6.35 MPa· m1/2、维氏硬度11.87 GPa.  相似文献   

9.
张立宏  雷慧茹 《人工晶体学报》2021,50(12):2255-2261
本文采用密度泛函理论中的赝势平面波法计算了ReB2P63/mmc晶体结构(即hP6-ReB2)的结构特性及弹性性质。在计算了hP6-ReB2的平衡结构参数后,从热力学、动力学及机械力学三方面验证了其结构稳定性。研究发现,hP6-ReB2在高压下的弹性系数、各个弹性模量均随压强的增加而增大。泊松比显示hP6-ReB2表现为脆性。三种类型的弹性波随压强的变化趋势显示hP6-ReB2为弹性各向异性晶体。经估算,hP6-ReB2结构的维氏硬度约为38.2 GPa。电子态密度揭示了hP6-ReB2的Re—B和B—B之间存在着强共价键,并且随着压强的增加共价键逐渐增强。  相似文献   

10.
基于密度泛函理论和Birch-Murnaghan状态方程系统分析研究了CaMnO3晶体材料的弹性常数、体弹模量、剪切模量和力学性质.结果表明,CaMnO3晶体材料具有较大的C11和C22,其还具有较大的体弹模量和剪切横量,具有一定的弹性各向异性.其杨氏模量高达219.62 GPa,较不易发生弹性形变.CaMnO3晶体材料具有较小的泊松比和体剪模量比,表明其极强的脆性,其硬度也达到28.255 GPa.CaMnO3晶体材料内部电子局域化较强,价带电子具有较大的有效质量,Mn与O之间的弱共价性结合可能是其高硬度和高剪切模量的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号