首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction dynamics of the fluorine atom with vibrationally excited D2(v=1, v=0) was investigated using the crossed beam method. The scheme of stimulated Raman pumping was employed for preparation of vibrationally excited D2 molecules. Contribution from the reaction of spin-orbit excited F?(2P1/2) with vibrationally excited D2 was not found. Reaction of spin-orbit ground F(2P3/2) with vibrationally excited D2 was measured and DF products populated in v‘=2, 3, 4, 5 were observed. Compared with the vibrationally ground reaction, DF products from the vibrationally excited reaction of F(2P3/2)+D2(v=1, j=0) are rotationally “hotter”. Differential cross sections at four collision energies, ranging from 0.32 kcal/mol to 2.62 kcal/mol, were obtained. Backward scattering dominates for DF products in all vibrational levels at the lowest collision energy of 0.32 kcal/mol. As the collision energy increases, angular distribution of DF products gradually shifts from backward to sideway. The collision-energy dependence of differential cross section of DF(v’=5) at forward direction was also measured. Forward-scattered signal of DF(v'=5) appears at thecollision energy of 1.0 kcal/mol, and becomes dominated at 2.62 kcal/mol.  相似文献   

2.
We report the preparation of D2 molecules in v=2 level in molecular beam condition. A single longitudinal mode laser system was used for excitation of D2 from (v=0, j=0) to (v=2, j=0) with the scheme of stimulated Raman pumping. An excitation efficiency of 25.2% has been achieved, which was determined by the scheme of resonance-enhanced multiphoton ionization. Dependence of relative excitation efficiency on laser energy has been measured. We found that the increasing rate of excitation efficiency became slower as pulse energy of Stokes laser increase, while the excitation efficiency still increases approximately linearly with pump pulse energies up to 60 mJ. The spectral line shapes of Raman transition was also measured at different laser energies and considerable dynamical Stark effect was observed. A single peak was found on the three dimension surface of relative excitation efficiency, indicating the process occurred in the present study is a process of stimulated Raman pumping instead of stimulated adiabatic Raman passage.  相似文献   

3.
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.  相似文献   

4.
The effects of two nearly isoenergetic C-H stretching motions on the gas-phase reaction of atomic chlorine with methane are examined. First, a 1:4:9 mixture of Cl(2), CH(4), and He is coexpanded into a vacuum chamber. Then, either the antisymmetric stretch (nu(3)=3019 cm(-1)) of CH(4) is prepared by direct infrared absorption or the infrared-inactive symmetric stretch (nu(1)=2917 cm(-1)) of CH(4) is prepared by stimulated Raman pumping. Photolysis of Cl(2) at 355 nm generates fast Cl atoms that initiate the reaction with a collision energy of 1290+/-175 cm(-1) (0.16+/-0.02 eV). Finally, the nascent HCl or CH(3) products are detected state-specifically via resonance enhanced multiphoton ionization and separated by mass in a time-of-flight spectrometer. We find that the rovibrational distributions and state-selected differential cross sections of the HCl and CH(3) products from the two vibrationally excited reactions are nearly indistinguishable. Although Yoon et al. [J. Chem. Phys. 119, 9568 (2003)] report that the reactivities of these two different types of vibrational excitation are quite different, the present results indicate that the reactions of symmetric-stretch excited or antisymmetric-stretch excited methane with atomic chlorine follow closely related product pathways. Approximately 37% of the reaction products are formed in HCl(v=1,J) states with little rotational excitation. At low J states these products are sharply forward scattered, but become almost equally forward and backward scattered at higher J states. The remaining reaction products are formed in HCl(v=0,J) and have more rotational excitation. The HCl(v=0,J) products are predominantly back and side scattered. Measurements of the CH(3) products indicate production of a non-negligible amount of umbrella bend excited methyl radicals primarily in coincidence with the HCl(v=0,J) products. The data are consistent with a model in which the impact parameter governs the scattering dynamics.  相似文献   

5.
A simple method to generate and characterize a pure highly vibrationally excited azulene molecular beam is demonstrated. Azulene molecules initially excited to the S4 state by 266-nm UV photons reach high vibrationally excited levels of the ground electronic state upon rapid internal conversion from the S4 electronically excited state. VUV laser beams at 157 and 118 nm, respectively, are used to characterize the relative concentrations of the highly vibrationally excited azulene and the rotationally and vibrationally cooled azulene in the molecular beam. With a laser intensity of 34 mJ/cm2, 75% of azulene molecules absorb a single 266-nm photon and become highly vibrationally excited molecules. The remaining ground-state azulene molecules absorb two or more UV photons, ending up either as molecular cations, which are repelled out of the beam by an electric field, or as dissociation fragments, which veer off the molecular-beam axis. No azulene without absorption of UV photons is left in the molecular beam. The molecular beam that contains only highly vibrationally excited molecules and carrier gas is useful in various experiments related to the studies of highly vibrationally excited molecules.  相似文献   

6.
We observe electron emission when vibrationally excited NO molecules with vibrational state v, in the range of 9 < or = v < or =18, are scattered from a Cs-dosed Au surface. The quantum efficiency increases strongly with v, increasing up to 10(-2) electrons per NO (v) collision, a value several orders of magnitude larger than that observed in experiments with similar molecules in the ground vibrational state. The electron emission signal, as a function of v, has a threshold where the vibrational excitation energy slightly exceeds the surface work function. This threshold behavior strongly suggests that we are observing the direct conversion of NO vibrational energy into electron kinetic energy. Several potential mechanisms for the observed electron emission are explored, including (1) vibrational autodetachment, (2) an Auger-type two-electron process, and (3) vibrationally promoted dissociation. The results of this work provide direct evidence for nonadiabatic energy-transfer events associated with large amplitude vibrational motion at metal surfaces.  相似文献   

7.
When stimulated Raman pumping (SRP) is applied to a stream of isolated molecules, such as found in a supersonic molecular beam expansion, we show that SRP can neither saturate nor power broaden a molecular transition connecting two metastable levels that is resonant with the energy difference between the pump and Stokes laser pulses. Using the optical Bloch-Feynman equations, we discuss the pumping of the hydrogen molecule from H(2) (v = 0, J = 0, M = 0) to H(2) (v = 1, J = 2, M = 0) as an illustration of how coherent population return severely reduces the SRP pumping efficiency unless the pump and Stokes laser pulses are applied with an appropriate relative delay and ratio of intensities.  相似文献   

8.
The production of H(2) in highly excited vibrational and rotational states (v=0-5, J=0-17) from the 157 nm photodissociation of amorphous solid water ice films at 100 K was observed directly using resonance-enhanced multiphoton ionization. Weaker signals from H(2)(v=2,3 and 4) were obtained from 157 nm photolysis of polycrystalline ice, but H(2)(v=0 and 1) populations in this case were below the detection limit. The H(2) products show two distinct formation mechanisms. Endothermic abstraction of a hydrogen atom from H(2)O by a photolytically produced H atom yields vibrationally cold H(2) products, whereas exothermic recombination of two H-atom photoproducts yields H(2) molecules with a highly excited vibrational distribution and non-Boltzmann rotational population distributions as has been predicted previously by both quantum-mechanical and molecular dynamics calculations.  相似文献   

9.
Supercollision relaxation of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) with D35Cl is investigated using high-resolution transient IR diode laser absorption spectroscopy at 4.4 microm. Highly excited pyrazine is prepared by pulsed UV excitation at 266 nm, followed by rapid radiationless decay to the ground electronic state. The rotational energy distribution of the scattered DCl (v = 0,J) molecules with J = 15-21 is characterized by T(rot) = 755+/-90 K. The relative translational energy increases as a function of rotational quantum number for DCl with T(rel) = 710+/-190 K for J = 15 and T(rel) = 1270+/-240 K for J = 21. The average change in recoil velocity correlates with the change in rotational angular momentum quantum number and highlights the role of angular momentum in energy gain partitioning. The integrated energy-transfer rate for appearance of DCl (v = 0,J = 15-21) is k(2)(int) = 7.1x10(-11) cm3 molecule(-1) s(-1), approximately one-eighth the Lennard-Jones collision rate. The results are compared to earlier energy gain measurements of CO2 and H2O.  相似文献   

10.
An efficient vibrationally selective technique to build-up the v″=1 vibrational levels in gaseous hydrogen is demonstrated using stimulated Raman pumping (SRP). Both photo-acoustic Raman spectroscopy (PARS) and coherent anti-Stokes Raman spectroscopy (CARS) are used to study non-radiative and radiative (v″=0 and v″=1) transitions in gaseous H(2) molecules. The population fraction in the v″=1 vibrational level has been estimated using combined photo-acoustic and coherent anti-Stokes Raman spectroscopy with stimulated Raman pumping.  相似文献   

11.
Differential cross sections for state-to-state rotationally inelastic electron-Na2 scattering, with the molecule being in the vibrational levelv′'=31, are measured at a collision energy of 150 eV. Angular momentum transfer of up to Δj=26 is observed, which is even more than previously obtained for the vibrational ground statev′'=0. Good agreement is found with theoretical results from a spectator scattering model. This work, in general, elucidates the role of vibrational excitation in collision dynamics under vibrationally sudden conditions.  相似文献   

12.
An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).  相似文献   

13.
Slice imaging experiments are reported for the quantum state-to-state photodissociation dynamics of OCS. Both one-laser and two-laser experiments are presented detecting CO(J) or S((1)D(2)) photofragments from the dissociation of hexapole state-selected OCS(v(2) = 0,1,2 / J = 1,2) molecules. We present data using our recently developed large frame CCD centroiding detector and have implemented a new high speed MCP high voltage pulser with an effective slice width of only 6 ns. Slice images are presented for quantum state-to-state photolysis, near 230 nm, of vibrationally excited OCS(v(2) = 0,1,2). Two-laser pump-probe experiments detecting CO(J = 63 or 64) show a dramatic change in the beta parameter for the same final state of CO(J) when the photolysis energy is reduced by about 1000 cm(-1). We attribute the observed change from large positive to large negative beta to a large increase of the molecular frame deflection angle at very slow recoil velocity, due to a breakdown of the axial recoil. Two-laser experiments on the S((1)D(2)) fragment reveal single well-separated rings in the slice images correlating with individual CO(J) states. Strong polarization effects of the probe laser are observed, both in the angular distribution of the intensity of single S((1)D(2)) rings and in the resolution of the radial velocity distribution. It is shown how the broadening of the velocity distribution can be reduced by a directed ejection of the electron in the ionization process perpendicular to the slice imaging plane. The dissociation energy of OCS(v(2) = 0, J = 0) --> CO(J = 0) + S((1)D(2)) is determined with high accuracy D(0) = (34 608 +/- 24) cm(-1).  相似文献   

14.
Quantum control spectroscopy (QCS) is used as a tool to study, address selectively and enhance vibrational wavepacket motion in large solvated molecules. By contrasting the application of Fourier-limited and phase-modulated excitation on different electronic states, the interplay between the controllability of vibrational coherence and electronic resonance is revealed. We contrast control on electronic ground and excited state by introducing an additional pump beam prior to a DFWM-sequence (Pump-DFWM). Via phase modulation of this initial pump pulse, coherent control is extended to structural evolution on the vibrationally hot ground state (hot-S0) and lowest lying excited state (S1) of β-carotene. In an open loop setup, the control scenarios for these different electronic states are compared in their effectiveness and mechanism.  相似文献   

15.
The conversion efficiency of stimulated Raman scattering (SRS) in CH4 is studied by using a single longitudinal mode second-harmonic Nd:YAG laser (532 nm, linewidth 0.003 cm-1, pulse-width (FWHM) 6.5 ns).Due to the heat release from vibrationally excited particles, SRS processes often suffer from the thermal defocusing effect (TDE). In view of 6.5 ns laser pulse width is much shorter than the vibrational relaxation time of CH4 molecules, TDE can only affect the SRS processes afterwards. In the cases of low laser repetition, TDE will be not serious, because it will be removed by the thermal diffusion in Raman medium before the next pulse arrives. At the laser repetition rate 2 Hz, CH4 pressure 1.1 MPa and pump laser energy 95 m J, the quantum conversion efficiency of backward first-Stokes (BS1) has attained 73%. This represents the highest first-stokes conversion efficiency in CH4. Furthermore, due to the relaxation oscillation, the BS1pulses are narrowed to about 1.2 ns. As a result, the BS1 peak power turns out to be 2.7 times that of the pump. Its beam quality is also much better and is only slightly affected by TDE. This reason is that BS1 represents a wave-front-reversed replica of the pump beam, which can compensate the thermal distortions in Raman amplify process. Under the same conditions, but pump laser repetition rate as 10 Hz, the conversion efficiency of BS1 goes down to 36% due to TDE. From this study, we expect that a well-behaved 630 nm Raman laser may be designed by using a closed CH4/He circulating-cooling system, which may have some important applications.  相似文献   

16.
A modified and recalibrated potential energy surface for the gas-phase Cl+CH4-->HCl+CH3 reaction is reported and tested. It is completely symmetric with respect to the permutation of the four methane hydrogen atoms and is calibrated with respect to updated experimental and theoretical stationary point properties and experimental forward thermal rate constants. From the kinetics point of view, the forward and reverse thermal rate constants and the activation energies were calculated using the variational transition-state theory with semiclassical transmission coefficients over a wide temperature range of 150-2500 K. The theoretical results reproduce the available experimental data, with a small curvature of the Arrhenius plot which indicates the role of tunneling in this hydrogen abstraction reaction. A dynamics study was also performed on this PES using quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found a noticeable internal energy in the coproduct methyl radical, both in the ground-state [CH4 (v=0)] and vibrationally excited [CH4 (v=1)] reactions. This CH3 internal energy was directly precluded in some experiments or oversimplified in previous theoretical studies using pseudotriatomic models. Second, our QCT calculations give HCl rotational distributions slightly hotter than those in experiment, but correctly describing the experimental trend of decreasing the HCl product rotation excitation in going from HCl (v'=0) to HCl (v'=1) for the CH4 (v=1) reaction. Third, the state specific scattering distributions present a reasonable agreement with experiment, although they tend to make the reaction more forward and backward scattered than found experimentally probably because of the hotter rotational distribution and the deficiencies of the QCT methods.  相似文献   

17.
We present photoelectron spectra for H2 in the excited C 1Πu, υ = 0–4.J = 1 levels prepared by multiphoton excitation. In accordance with the Franck-Condon principle, the H2+ vibrational state distribution is dominated by Δυ = 0 transitions from the C 1Πu state, illustrating a useful method for preparing vibrationally state-selected molecular ions. Equally important observed systematic departures from Franck-Condon factors, which provide detailed information on excited-state photoionization dynamics of molecules.  相似文献   

18.
Resonance Raman spectra of nickel, chromium, and copper porphyrins, excited at their Soret maxima, show decreasing scattering intensity due to depolarized modes. This order correlates with diminished 1Q(0-0) absorption in the porphyrins. The data are interpreted in terms of Jahn-Teller distortions in both Q and B states. General agreement between predicted and observed excitation profiles of nickel etioporphyrin I support a vibronic treatment of the excited states. The effect of tight focusing of the incident beam is to quench most Raman scattering intensity, except the 1384 cm?1 line of the nickel complex.  相似文献   

19.
CH4+O(3P)→CH3+OH反应的准经典轨线研究   总被引:1,自引:0,他引:1  
用准经典轨线方法研究了O(3P)与CH4的反应,计算结果表明,CH4(υ=0,j=0)与O(3P)的反应在低及高的碰撞参数下都是直接反应,无短寿命的碰撞复合物生成,产物OH以向后散射为主,基本上处于振转基态.CH4(υ=1,j=1)与O(3P)的反应在低及高的碰撞参数下反应机理不一样。在低碰撞参数下是直接反应,无短寿命的碰撞复合物生成,产物OH以向后散射为主,主要处于振动基态,转动基本上是冷的,但比高碰撞参数下的热.在高的碰撞参数下则生成短寿命的碰撞复合物,产物OH以向前散射为主,表现出明显的周边动力学反应的特征,主要处于振动激发态(υ=1),但转动仍然是较冷的。  相似文献   

20.
Quantum-mechanical calculations are reported for the Li+HF(v=0,1,j=0)-->H+LiF(v',j') bimolecular scattering process at low and ultralow temperatures. Calculations have been performed for zero total angular momentum using a recent high-accuracy potential-energy surface for the X2A' electronic ground state. For Li+HF(v=0,j=0), the reaction is dominated by resonances due to the decay of metastable states of the Li cdots,...F-H van der Waals complex. Assignment of these resonances has been carried out by calculating the eigenenergies of the quasibound states. We also find that while chemical reactivity is greatly enhanced by vibrational excitation, the resonances get mostly washed out in the reaction of vibrationally excited HF with Li atoms. In addition, we find that at low energies, the reaction is significantly suppressed due to the less-efficient tunneling of the relatively heavy fluorine atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号