首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystallization of calcium oxalate (CaOxa) in aqueous solutions of the extracts of Semen Plantaginis and Folium Pyrrosiae has been investigated, focusing on the inhibition mechanism of some herbs on stone formation. It has been shown that in the presence of extracts of above two herbs, calcium oxalate dihydrate (COD) crystals with typical morphologies of tetragonal bipyramids were obtained. This suggests that the extracts of Semen Plantaginis and Folium Pyrrosiae can promote the formation of thermodynamically unstable COD, and inhibit the formation of calcium oxalate monohydrate (COM), a major component of urinary stone. The formation mechanism of COD crystals induced by Semen Plantaginis and Folium Pyrrosiae is also discussed, indicating that the bioorganic molecules in the extracts of the herbs can induce the nucleation and growth of COD crystals. This study can help us make clear the inhibition mechanism of some herbs on stone formation that is in favor of the prevention and treatment of urolithiasis. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The effect of uric acid seeds on calcium oxalate formation was studied at pH 4.50 and 37 °C using a system providing constant supersaturation with respect to calcium oxalate and saturated in uric acid. In all cases the only solid‐phase forming was identified as calcium oxalate monohydrate (COM). Kinetic analysis of the initial rates showed that they were proportional with the relative supersaturation with respect to calcium oxalate monohydrate. The linear dependence of the rate of precipitation of COM on uric acid suggested that growth is mediated through a surface diffusion controlled mechanism. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The investigation on the mechanism of nucleation and growth of crystals at organic‐inorganic interfaces is crucial for understanding biological and physiological calcification processes such as the formation of urinary stones. The effects of five different amino acids on the crystallization of calcium oxalate have been investigated at pH 4.5 and 37 °C in aqueous solutions in the batch type crystallizer. The products were characterized by Scanning Electron Microscopy (SEM), Fourier Transfer Infrared Spectroscopy (FT/IR) and X‐Ray diffraction (XRD) analysis. Crystal size distribution (CSD) and filtration rate measurements were done. In order to determine the adsorption characteristics of amino acids on the calcium oxalate crystal surfaces, zeta potential measurements were also done and discussed. The results indicate that in the presence of all investigated amino acids, calcium oxalate monohydrate (COM) crystals were preferentially produced, but the crystal morphology varied with amino acid types and concentrations. Various crystal morphologies such as elongated hexagonal, coffin or platy habits were observed. In the presence of all investigated amino acids, the calcium oxalate crystallized in a monohydrate form. Electrostatic/ionic interaction, different adsorption properties and special functional effects of amino acids led to find different crystal morphology. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
采用扫描电子显微镜(SEM)和X射线衍射(XRD)方法,比较研究了防石药物柠檬酸钾(K3cit)在尿石患者尿液和正常人尿液制备的凝胶中对草酸钙(CaOxa)晶体生长的影响.没有加入K3cit时,CaOxa晶体均以一水草酸钙(COM)为主要晶相,加入K3cit后,不但COM晶体变得圆钝,比表面积减小,而且诱导了二水草酸钙(COD)生成.随着K3cit浓度从0.10增加到0.20 mol/L,在正常人尿液凝胶中COD晶体的百分含量从20;增加到45;,而在CaOxa结石患者尿液凝胶中,不但COD含量从10;增加到25;,而且K3cit可诱导草酸钙成核,从而产生大量的小尺寸草酸钙晶体,这有利于阻止草酸钙晶体变大形成尿石.本结果可为临床上治疗CaOxa结石提供启示.  相似文献   

5.
温度变化对草酸钙晶体生长的影响   总被引:4,自引:1,他引:4  
草酸钙(CaOxa)是泌尿系结石的主要成份,其生长过程受诸多因素的影响.本文研究了温度对CaOxa晶体成核、生长、聚集、晶相、形貌和溶解度等的影响及其机理,对防治泌尿系结石具有启示作用.但高温地区尿石症发病率高的深层次原因还有待进一步研究.  相似文献   

6.
海带硫酸多糖防止草酸钙结石形成的体外模拟   总被引:1,自引:0,他引:1  
采用扫描电子显微镜、X射线衍射法和红外光谱在草酸钙(CaOxa)结石患者尿液中研究了从海带中提取的硫酸多糖(LSPS)的防石作用.结果表明,LSPS可以抑制一水草酸钙(COM)的成核和聚集,并诱导二水草酸钙(COD)晶体形成.随着ESPS浓度从0增加到0.005, 0.02和0.20 mg/ml,COD的百分含量从0分别增加到22;, 55;和100;.这些结果表明LSPS是抑制CaOxa结石形成的一种潜在药物.  相似文献   

7.
Nucleation and growth of calcium oxalate (CaC2O4) crystals induced by films composed of phosphatidylcholine (PC), cholesterol (CS) and human serum albumin (HSA), and of PC, CS and dextran have been carried out. The products obtained were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and ultraviolet‐visible spectroscopy. The results indicate that hexagonal calcium oxalate monohydrate (COM) and club‐shaped calcium oxalate trihydrate (COT) crystals are obtained on the PC/CH/HSA film, and the microstructure and properties of the PC/CH/HSA film depend on the weight ratio of PC to CS. With an increase in the PC‐to‐CS ratio, the number of COM crystals decreases gradually, and finally disappear, suggesting that PC inhibits the growth of COM crystals. On the PC/CS/dextran film, irregular COM and COT crystals are formed. The possible formation mechanisms of CaC2O4 on the two complex films are discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Biomimetic living bi‐templates, mung bean sprouts (MBS), were employed to control the crystallization of calcium oxalate dehydrate (COD). Two kinds of crystals in different shapes were simultaneously grown on the outer surface and the inner stem wall of MBS respectively. The whole process is in the living system that material flow and energy exchange ceaselessly. The products were respectively characterized by SEM, XRD. A presumable mechanism is proposed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
There are various organic and inorganic constituents in kidney stones. Among them, calcium oxalate monohydrate (COM) is the primary inorganic constituent of kidney stones. However, the mechanisms of formation of kidney stones are not well understood. In this regard, a basic study is carried out for better understanding of nucleation, crystal growth and/or aggregation of formed COM crystals. The primary nucleation of calcium oxalate monohydrate is studied at the laboratory scale using turbidity measurements. Calcium chloride and potassium oxalate solutions are mixed and then added to a Turbidimeter tube for continuous recording of turbidity. Induction time (time to induce formation of detectable crystals) is estimated from time‐turbidity graphs. The effect of some urinary species, such as oxalate and calcium, on nucleation and crystallization characteristics of COM is determined by particle size distribution analysis, measuring weight of crystals and calculation of relative supersaturation. The classical nucleation theory is applied at high supersaturation ratios (SR) ranging from 1.6 to 2.2. The results indicate that nucleation rate increases with increasing supersaturation ratio from 0.81 × 1028 nuclei/cm3.sec at 1.6 SR, to 18.02 × 1028 nuclei/cm3.sec at 2.2 SR. On the other hand, free energy change and radius of critical nucleus are decreased as supersaturation ratio is increased. The nucleation rates are higher than those reported in literature. Such discrepancy is discussed on the bases of differences in experimental techniques. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Kidney stones consist of various organic and inorganic compounds. Calcium oxalate monohydrate (COM) is the main inorganic constituent of kidney stones. However, the mechanisms for the formation of calcium oxalate kidney stones are not well understood. In this regard, there are several hypotheses including nucleation, crystal growth and/or aggregation of formed COM crystals. The effect of some urinary species such as oxalate, calcium, citrate, and protein on nucleation and crystallization characteristics of COM is determined by measuring the weight of formed crystals and their size distributions under different chemical conditions, which simulate the urinary environment. Statistical experimental designs are used to determine the interaction effects among various factors. The data clearly show that oxalate and calcium promote nucleation and crystallization of COM. This is attributed to formation of a thermodynamically stable calcium oxalate monohydrate resulting from supersaturation. Citrate, however, inhibits nucleation and further crystal growth. These results are explained on the basis of the high affinity of citrate to combine with calcium to form soluble calcium citrate complexes. Thus, citrate competes with oxalate ion for binding to calcium cations. These conditions decrease the amount of free calcium ions available to form calcium oxalate crystals. In case of protein (mucin), however, the results suggest that no significant effect could be measured of mucin on nucleation and crystal growth. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Preparation and optical characterization of dysprosium gadolinium oxalate (DGO) single crystal is reported. The crystals were grown using silica gel technique, by the controlled reaction of rare earth nitrates with oxalic acid. Crystals were characterized using X‐ray powder diffraction, optical absorption and fluorescence studies. Radiative transition probability, fluorescence branching ratio and radiative lifetime of Dy3+ in the crystal are evaluated by the parameterization of the absorption spectrum by the Judd‐Ofelt theory. The recorded fluorescence spectrum showed two well resolved peaks at 480 nm and 571 nm and are assigned to the transitions from 4F9/26H15/2 and 6H13/2 of Dy3+. Stimulated emission crossection and optical gain of these transitions are also evaluated. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Reactive crystallization of calcium oxalate was investigated in the presence of amino acids, proteins and carboxylic acids at different pH and temperatures. Average particle size, filtration rates of calcium oxalate crystals obtained in the absence and presence of additives were determined. The influence of pH, temperatures and additives on crystal morphology of calcium oxalate were also investigated and discussed by SEM analysis. TG‐DTA, FT/IR and XRD analysis were carried out for all investigated conditions. Average particle size of calcium oxalate was affected significantly by the additive type and concentration. Variation of crystal morphology depending on type and concentration of the additives affected the filtration characteristics. Majority of calcium oxalate crystals occurred in the form of calcium oxalate monohydrate except those in the presence of tartaric acid. TG‐DTA, FT/IR and XRD analysis proved that calcium oxalate monohydrate and calcium oxalate dihydrate mixtures are formed in the presence of tartaric acid. The effect of all additives on scale formation was also investigated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Control over crystal morphology of calcium carbonate (CaCO3) was investigated by simply changing the stirring speeds in the process of CaCO3 formation. Scanning electron microscopy (SEM) and powder X‐ray diffraction (XRD) measurements explore the morphology evolution of CaCO3 at varying stirring speeds. As the stirring speeds increase, rhombohedral calcite, spherical vaterite, and monoclinic crystal with coexistence of calcite phase and vaterite phase were formed, suggesting a facile control over calcium carbonate crystallization in constructing crystals with desired morphology. Moreover, almost pure vaterite spherical particles of narrow particle size distribution were formed at optimum stirring speed. Finally, also elucidated in this work is the mechanism investigation into the construction of various crystal forms via this simple route. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The effect of different bi‐ and trivalent cationic impurities on the solubility of ammonium oxalate and the composition and distribution of chemical complexes formed in saturated ammonium oxalate aqueous solutions as a function of impurity concentration are investigated. The knowledge of the composition and stability of complexes formed in saturated aqueous solutions is then employed to explain the appearance of dead zones of supersaturation for growth and the difference in the effective segregation coefficient of the impurities. Analysis of the experimental results revealed that: (1) at a constant temperature, the dependence of concentration of complex species formed in saturated solutions on the concentration of different impurities can be described by an equation similar to that of the concentration dependence of density of solutions, (2) the dominant metal‐containing species present in saturated solutions are negatively‐charged, most stable oxalato complexes like Cu(C2O4)22−, Mn(C2O4)34−, Zn(C2O4)34−, Cr(C2O4)33− and Fe(C2O4)33−, (3) in the investigated range of impurity concentration, the solubility of ammonium oxalates increases linearly with the concentration of all impurities and the increase is associated with the stability of dominant complexes, (4) appearance of dead supersaturation zones in the presence of impurities is associated with instantaneous adsorption of all growth sites by dominant oxalato complexes in relatively short adsorption time, and (5) the segregation coefficient of an impurity cation M of charge z + increases with a decrease in the solubility product constant Ksp for the hydrolysis products of reactions of the type: Mz + ↔ M1(z −1)+ + H+ (where the cation M has z + charge, and H+ is hydrogen ion). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The experimental data of the temperature and concentration dependence of viscosity of concentrated aqueous ammonium oxalate solutions are analysed using the hole theory of liquids and Einstein's model of viscosity. Analysis of the data revealed that the dimensions of the species participating in the growth of ammonium oxalate monohydrate crystals are 3‐5 times larger than the dimensions of individual NH4+ and C2O42‐ ions composing them. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as and (0 2 0), and thus results in remarkable stabilization of the faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the face.  相似文献   

17.
Crystalline calcium carbonate with randomly dispersed porous structure was prepared through co‐ crystallization with calcium peroxide and the following template elimination by a post heating treatment and washing with water. The artificial CaCO3 possess abundant macro‐mesopores structures and high surface area. This approach may open a new general route for the preparation of crystals with high porosity and structure specialty. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper reports one method to grow dendritic flower calcium hydroxide on aluminium substrate using polyacrylamide as a template. A series of electron microscopy images show new images of the products and together with themogravimetry differential thermal analysis and other conventional techniques, the composition of the products was found to be calcium hydroxide containing polyacrylamide. The result of the mechanism for the formation of the dendritic flower made of primary particles is also presented. An understanding of this mesoscale transformation process will be helpful in controlling the aggregation‐driven formation of complex higher‐order structures materials. This study could provide an additional tool for designing advanced materials and could be used for synthesis of more complex structures. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The experimental results of the effect of concentration of Mn(II) ions on the growth kinetics of different faces of ammonium oxalate monohydrate single crystals from aqueous solutions at a constant temperature and different predefined supersaturations are described and discussed. It was observed that: (1) at a given supersaturation σ, Mn(II) ions lead to a decrease in the growth rates of different faces of AO crystals, (2) the growth of a particular face of the crystals occurs above a critical supersaturation σd but there is also another supersaturation barrier σ* when the rate abruptly increases with σ, (3) the values of σd and σ* increase with increasing concentration of the impurity, and (4) the values of σd depend on the growth kinetics of a face but those of σ* are independent of face growth kinetics. The experimental R(σ) data for different Mn(II) concentrations ci were analysed according to the model involving complex source of cooperating screw dislocations and concepts of instantaneous and time‐dependent impurity adsorption. It was found that: (1) for a given face the differential heat of adsorption Qdiff is higher during instantaneous impurity adsorption than that during time‐dependent adsorption, and (2) the values of Qdiff involved during instantaneous adsorption are related with face growth kinetics but those during time‐dependent adsorption are independent of face growth kinetics.  相似文献   

20.
Procedures for obtaining noncytotoxic and nonmutagenic extracts from Humulus lupulus L. of high potency for inhibition and dissolving of model (calcium oxalate crystals) and real kidney stones, obtained from patients after surgery, are presented. Multistep extraction procedures were performed in order to obtain the preparations with the highest calcium complexing properties. The composition of obtained active fractions was analyzed by GC/MS and NMR methods. The influence of preparations on inhibition of formation and dissolution of model and real kidney stones were evaluated based on conductrometric titration, flame photometry and microscopic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号