首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122  相似文献   

2.
New multifunctional copoly(2‐oxazoline) nanoparticles were prepared for cell studies. The polymer contains double‐bond side chains as potential reaction sites for “thio”‐click reactions as well as a fluorescein label covalently bound to the polymer backbone. Using the nanoprecipitation technique, spherical nanoparticles of 200–800 nm were obtained. Confocal laser scanning microscopy measurements revealed the cellular uptake of the nanoparticles.

  相似文献   


3.
The microwave‐assisted statistical copolymerization of 2‐phenyl‐2‐oxazoline with 2‐methyl‐2‐oxazoline or 2‐ethyl‐2‐oxazoline is discussed in this contribution. Kinetic studies of these statistical copolymerizations as well as reactivity ratio determinations were performed to investigate the monomer distribution in these copoly(2‐oxazoline)s, demonstrating the formation of quasi‐diblock copolymers. In addition, the synthesis of copolymer series with monomer concentrations ranging from 0 to 100 mol % is described. These copolymer series were characterized with 1H NMR spectroscopy, gas chromatography, and gel permeation chromatography. Moreover, the glass‐transition temperatures and solubility of these copolymers were studied, and this revealing better mixing of poly(2‐methyl‐2‐oxazoline) (pMeOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx) than poly(2‐ethyl‐2‐oxazoline) (pEtOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 416–422, 2007.  相似文献   

4.
A 32‐membered library of poly(2‐oxazoline)‐based hydrogels of the composition p EtOx m‐p PhOx n‐p PBO q (m/n = 150/0, 100/50, 50/100, and 0/150; q = 1.5–30) was prepared from 2‐ethyl‐ ( EtOx ), 2‐phenyl‐2‐oxazoline ( PhOx ), and phenylene‐1,3‐bis‐(2‐oxazoline) ( PBO ). The polymerizations were performed from ground monomer mixtures at 140 °C in a single‐mode microwave reactor in reaction times as short as 1 h. Purified hydrogels, containing no residual monomers, were obtained in yields of 95% or higher. Acid‐mediated hydrolysis rates as well as swelling degrees of the hydrogels were adjustable over a broad range; swelling degrees in water/ethanol/dichloromethane ranged from 0 to 13.8/11.7/20.0. The hydrogels could incorporate organic molecules according to in situ or post‐synthetic routines. Post‐synthetic routines enabled for the preparation of hydrogels from which the incorporated compounds were only released through diffusion processes if the solvent was changed or through hydrogel degradation if the pH was lowered.  相似文献   

5.
A series of hydrogels from 2‐ethyl‐2‐oxazoline and three bis(2‐oxazoline) crosslinkers—1,4‐butylene‐2,2′‐bis(2‐oxazoline), 1,6‐hexamethylene‐2,2′‐bis(2‐oxazoline), and 1,8‐octamethylene‐2,2′‐bis(2‐oxazoline)—are prepared. The hydrogels differ by the length of aliphatic chain of crosslinker and by the percentage of crosslinker (2–10%). The influence of the type and the percentage of the crosslinker on swelling properties, mechanical properties, and state of water is studied. The equilibrium swelling degree in water ranges from 2 to 20. With a proper selection of the crosslinker, Young's modulus can be varied from 10 kPa to almost 100 kPa. To evaluate the potential for medical applications, the cytotoxicity of extracts and the contact toxicity toward murine fibroblasts are measured. The hydrogels with the crosslinker containing a shorter aliphatic exhibit low toxicity toward fibroblast cells. Moreover, the viability and the proliferation of pancreatic β‐cells incubated inside hydrogels for 12 days are analyzed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1548–1559  相似文献   

6.
The monomers 2‐methyl‐2‐oxazine (MeOZI), 2‐ethyl‐2‐oxazine (EtOZI), and 2‐n‐propyl‐2‐oxazine (nPropOZI) were synthesized and polymerized via the living cationic ring‐opening polymerization (CROP) under microwave‐assisted conditions. pEtOZI and pnPropOZI were found to be thermoresponsive, exhibiting LCST behavior in water and their cloud point temperatures (TCP) are lower than for poly(2‐oxazoline)s with similar side chains. However, comparison of poly(2‐oxazine) and poly(2‐oxazoline)s isomers reveals that poly(2‐oxazine)s are more water soluble, indicating that the side chain has a stronger impact on polymer solubility than the main chain. In conclusion, variations of both the side chains and the main chains of the poly(cyclic imino ether)s resulted in a series of distinct homopolymers with tunable TCP.  相似文献   

7.
The bulk polymerization of 2‐(dec‐9‐enyl)‐2‐oxazoline ( DecEnOx ), a fatty acid‐based monomer for the cationic ring‐opening polymerization, is reported. Furthermore, under optimal conditions, namely microwave heating at 100 °C, the bulk copolymerization with 2‐ethyl‐2‐oxazoline yielded well‐defined copolymers. Due to its pendant alkene groups DecEnOx ‐based polymers possess the potential to be modified in efficient thiol‐ene reactions. The functionalization with thiols, e.g., dodecanethiol and 2,3,4,6‐tetra‐O‐acetyl‐1‐thio‐β‐D ‐glycopyranose in “green” solvents is demonstrated.

  相似文献   


8.
Copoly(2‐oxazoline)‐based photoresists are prepared from pEtOx80Bu=Ox20 and pPhOx80Dc=Ox20 , respectively, a tetrathiol, and a photosensitive initiator. It is possible to prepare copoly(2‐oxazoline)s bearing unsaturated side chains in a microwave reactor on a decagram scale in reaction times of 100 min or shorter. UV irradiation of dried polymer films through a quartz mask induces the thiol‐ene reaction in the illuminated areas. Subsequent development of the polymer films in halogen‐free solvents reproduces the negative pattern of the mask with a resolution of 2 μm. The pEtOx80Bu=Ox20 ‐derived photoresists can also be developed in water.  相似文献   

9.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

10.
The monomer concentration for the cationic ring‐opening polymerization of 2‐ethyl‐2‐oxazoline in N,N‐dimethylacetamide was optimized utilizing high‐throughput experimentation methods. Detailed 1H‐NMR spectroscopic investigations were performed to understand the mechanistic aspects of the observed concentration effects. Finally, the improved polymerization concentration was applied for the synthesis of higher molecular weight (> 10,000 Da) poly(2‐ethyl‐2‐oxazoline)s. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1487–1497, 2005  相似文献   

11.
A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using microfiber porogens is presented. Melt electrospinning writing of poly(ε‐caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2‐oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well‐defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g., nutrients, growth factors or therapeutics.

  相似文献   


12.
This article describes the synthesis and characterization of a variety of new poly(2‐oxazoline)s. With regard to functional polymers, 2‐oxazolines represent an interesting class of monomers because of the easy variation of the substituent in 2‐position. Starting from the corresponding nitriles, different 2‐oxazolines were obtained containing a diverse set of 2‐substituents, including thioether bonds ( M11 ), trifluoromethyl groups ( M8 , M10 ), and alkyl‐ or aryl groups ( M1 – M7 ). The subsequent polymerization of the majority of these monomers proceeded in a living manner, which was demonstrated by linear first‐order kinetics, a linear increase of molar mass with conversion, and relatively narrow molar mass distributions. In addition, selected thermal and surface properties of the polymers were studied utilizing DSC and contact‐angle measurements to determine the effects of different 2‐substituents on the macroscopic properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3829–3838, 2009  相似文献   

13.
The synthesis of statistical copolymers consisting of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐“soy alkyl”‐2‐oxazoline (SoyOx) via a microwave‐assisted cationic ring‐opening polymerization procedure is described. The majority of the resulting copolymers revealed polydispersity indices below 1.30. The reactivity ratios (rEtOx 1.4 ± 0.3; rSoyOx = 1.7 ± 0.3) revealed a clustered monomer distribution throughout the polymer chains. The thermal and surface properties of the pEtOx‐stat‐SoyOx copolymers were analyzed before and after UV‐curing demonstrating the decreased chain mobility after cross‐linking. In addition, the cross‐linked materials showed shape‐persistent swelling upon absorption of water from the air, whereby as little as 5 mol % SoyOx was found to provide efficient cross‐linking. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5371,–5379, 2007  相似文献   

14.
Poly(2‐alkyl‐2‐oxazoline)s can be regarded as pseudo‐peptides or bioinspired polymers, which are available through living/controlled cationic polymerization and polymer (“click”) modification procedures. Materials and solution properties may be adjusted via the nature of the side chain (hydrophilic‐hydrophobic, chiral, bio‐functional, etc.), opening the way to stimulus‐responsive materials and complex colloidal structures in aqueous environments. Herein, we give an overview over the macromolecular engineering of polyoxazolines, including the synthesis of biohybrids, and the “smart”/bioinspired aggregation behavior in solution.

  相似文献   


15.
Summary: We studied the cationic ring‐opening polymerization of 2‐phenyl‐2‐oxazoline under microwave irradiation. A comparison with thermal heating shows a great enhancement in the reaction rates while the living character of the polymerization is conserved. The polymerizations were performed at the temperature of boiling butyronitrile (123 °C). The polymerization of 2‐phenyl‐2‐oxazoline under microwave conditions, described herein for the first time, is shown to be a rapid and environmentally friendly alternative to the classical methods.

Schematic of the activation of the reactive site by microwave irradiation.  相似文献   


16.
In this study, the structure–property relationships for a series of statistical 2‐nonyl‐2‐oxazoline (NonOx) and 2‐phenyl‐2‐oxazoline (PhOx) copolymers were investigated for the first time. The copolymerization kinetics were studied and the reactivity ratios were calculated to be rNonOx = 7.1 ± 1.4 and rPhOx = 0.02 ± 0.1 revealing the formation of gradient copolymers. The synthesis of a systematical series of NonOx–PhOx copolymers is described, whereby the amount of NonOx was increased in steps of 10 mol %. The thermal and surface properties were investigated for this series of well‐defined copolymers. The thermal properties revealed a linear decrease in glass transition temperature for copolymers containing up to 39 wt % NonOx. Furthermore, the melting temperature of the copolymers containing 0 to 55 wt % PhOx linearly decreased most likely due to disturbance of the NonOx crystalline domains by incorporation of PhOx in the NonOx part of the copolymer. The surface energies of spincoated polymer films revealed a strong decrease in surface energy upon incorporation of NonOx in the copolymers due to strong phase separation between NonOx and PhOx allowing the NonOx chains to orient to the surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6433–6440, 2009  相似文献   

17.
Herein, cylindrical molecular bottlebrushes grafted with poly(2‐oxazoline) (POx) as a shaped tunable uni‐molecular nanoparticle were synthesized via the grafting‐onto approach. First, poly(glycidyl methacrylate) (PGMA) backbones with azide pendant units were prepared via reversible addition fragmentation transfer (RAFT) polymerization followed by post‐modification. The degree of polymerization (DP) of the backbones was tuned in a range from 20 to 800. Alkynyl‐terminated POx side chains were synthesized by living cationic ring opening polymerization (LCROP) of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐methyl‐2‐oxazoline (MeOx), respectively. The DP of side chains was varied between 20 and 100. Then, the copper‐catalyzed azide‐alkynyl cycloaddition (CuAAC) click chemistry was conducted with a feed ratio of [alkynyl]:[azide] = 1.2:1 to yield a series of brushes. Depending on the DP of side chains, the grafting density ranged between 47 and 85%. The resulting brushlike nanoparticles exhibited shapes of sphere, rod and worm. Aqueous solutions of PEtOx brushes demonstrated a thermoresponsive behavior as a function of the length of backbones and side chains. Surprisingly, it was found that the lower critical solution temperature of PEtOx brushes increased with a length increase of backbones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 174–183  相似文献   

18.
Limitations of PEG in drug delivery have been reported from clinical trials. PEtOx (0.4–40 kDa) as alternative is synthesized by a living, microwave‐assisted polymerization, and is directly compared to PEG of similar molar mass regarding cytotoxicity and hemocompatibility. In short‐term treatments, both types of polymers are well tolerated even at high concentrations. Moderate concentration and molar mass dependent cytotoxic effects occurred only after long‐term incubation at concentrations higher than therapeutic doses. PEtOx possesses not only an easy route of synthesis and beneficial physicochemical characteristics such as low viscosity and high stability, which are advantageous over PEG, but additionally in vitro toxicology comparable to PEG.

  相似文献   


19.
Proton transfer polymerization through thiol‐epoxy “click” reaction between commercially available and hydrophilic di‐thiol and di‐epoxide monomers is carried out under ambient conditions to furnish water‐soluble polymers. The hydrophilicity of monomers permitted use of aqueous tetrahydrofuran as the reaction medium. A high polarity of this solvent system in turn allowed for using a mild catalyst such as triethylamine for a successful polymerization process. The overall simplicity of the system translated into a simple mixing of monomers and isolation of the reactive polymers in an effortless manner and on any scale required. The structure of the resulting polymers and the extent of di‐sulfide defects are studied with the help of 13C‐ and 1H‐NMR spectroscopy. Finally, reactivity of the synthesized polymers is examined through post‐polymerization modification reaction at the backbone sulfur atoms through oxidation reaction. The practicality, modularity, further functionalizability, and water solubility aspects of the described family of new poly(β‐hydroxythio‐ether)s is anticipated to accelerate investigations into their potential utility in bio‐relevant applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3381–3386  相似文献   

20.
Chromophore‐functionalized copoly(2‐oxazoline)s are successfully evaluated as bottom antireflective coatings (BARCs) in high‐resolution photolithography. With respect to UV light sources used in photolithographic production routines, anthracene is chosen as a chromophore. For application as polymer in BARCs, the copolymer poly(2‐ethyl‐2‐oxazolin)45stat‐poly(2‐dec‐9′‐enyl‐2‐oxazolin)20stat‐poly(2‐(3′‐(1″‐(anthracen‐9‐ylmethyl)‐1″,2″,3″‐triazol‐4‐yl)propyl)‐2‐oxazolin)35 can be synthesized by the Huisgen cycloaddition click reaction of the copolymer poly(2‐ethyl‐2‐oxazolin)45stat‐poly(2‐dec‐9′‐enyl‐2‐oxazolin)20stat‐poly(2‐pent‐4′‐inyl‐2‐oxazolin)35 and the corresponding azide‐functionalized anthracenes. These copolymers can be crosslinked by the thermally induced thiol‐ene reaction involving the unsaturated C=C bonds of the poly(2‐dec‐9′‐enyl‐2‐oxazoline) repetition units and a multifunctional thiol as crosslinker. Tests of this BARC in a clean room under production conditions reveal a significant decrease of the swing‐curve of a chemically amplified positive photoresist by more than 50%, hence significantly increasing the resolution of the photoresist.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号