首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg: Er: LiNbO3 crystals were grown by the Czochralski technique with various concentrations of MgO = 2 mol%, 4 mol%, 6 mol% and the fixed concentration of Er2O3= 1 mol% in the melt, and the 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was fabricated by the Czochralski technique with special technology process. The crystals were treated by polarization, reduction and oxidation. The segregation coefficients of Mg2+ and Er3+ in Mg: Er: LiNbO3 crystals were measured by X‐ray fluorescence spectrograph, as well as the crystal's defect structure and optical properties were analyzed by the UV‐Vis, IR and fluorescent spectroscopy. The pump wavelength and the surge wavelength were determined. Using m‐line method tested optical damage resistance of those crystals, the results show that photodamage threshold of Mg: Er: LiNbO3 crystals are higher than that of Er: LiNbO3 crystal, and the oxidation treat could enhance the photodamage resistant ability of crystals while the reduction treat could depress the ability. The optical damage resistance of 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was the strongest among the samples, which was two orders magnitude higher than that of 1 mol%Er: LiNbO3 crystal. The dependence of the optical properties on defect structure of Mg: Er: LiNbO3 crystals was discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Thermal conditions and rotation rate were examined experimentally for obtaining a flat interface growth of high melting‐point oxide (Tb3ScxAl5‐xO12 ‐ TSAG) by the Czochralski method. The critical crystal rotation rate can be significantly reduced, of about twice at low and very low temperature gradients comparing to medium temperature gradients in the melt and surroundings of the crystal. The interface shape of TSAG crystals is not very sensitive on crystal rotation rate at small rotations and becomes very sensitive at higher rotations, when the interface transition takes place. The range of crystal rotation rates during the interface transition from convex to concave decreases with a decrease of temperature gradients. At low temperature gradients interface inversion crystals takes place in very narrow range of rotation rates, which does not allow one to growth such crystals with the flat interface. Even changing crystal rotation rate during the growth process in a suitable manner did not prevent the interface inversion from convex to concave and thus did not allow to obtain and maintain the flat interface.  相似文献   

3.
The pure congruent LiNbO3, Er:LiNbO3 and Zn,Er co‐doped Li‐rich LiNbO3 crystals were grown by Czochralski method. The X‐ray diffraction method and ultraviolet‐visible absorption spectra of the crystals were used to analyze the structure of the crystals. The photo‐damage ability resistance of the crystals was measured. The Zn,Er co‐doped Li‐rich LiNbO3 crystals show a decrease in lattice constant values, a shift in absorption edge of ultraviolet‐visible absorption spectra towards shorter wavelength, and three orders of magnitude increase in photo‐damage resistance compared to congruent LiNbO3 crystal. The intrinsic and extrinsic defects are discussed to explain the enhance of the photo‐damage ability resistance  相似文献   

4.
Transparent and nearly colorless ferroelectric‐ferroelastic β′‐Tb2(MoO4)3 (TMO) single crystals have been grown by the Czochralski (CZ) method. The single crystal structure was investigated by X‐ray powder diffraction and was shown to be a single phase with the structure similar as the β′‐Gd2(MoO4)3 crystal. The optical transparency of the TMO crystal has been measured and the crystal is almost transparent in the visible and near infrared regions. The defects of TMO crystal were evaluated by etching technique and the ferroelectric domain structures were observed by an optical microscope. A high‐resolution X‐ray diffraction analysis demonstrates that the as‐grown TMO crystal possesses relatively high optical quality. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Ge1–xSix crystals were grown with the Bridgman and the Czochralski method over a wide concentration range. With the Bridgman process single crystals up to 40 at.% Si were possible. The reasons for polycrystalline growth were the permanent contact of the interface with the crucible wall in combination with curvature towards the crystal and inclusions of high Si concentration. Analysis of striations in Czochralski grown material showed that in this process the crystal does not continuously grow in one direction but consists of piece-wise grown crystals in which the composition permanently changes. According to that fact the main reason for polycrystalline growth in the Czochralski process is common due to lattice mismatch between the seed and equilibrium concentration transients in the crystal corresponding to the microscopic growth rates.  相似文献   

6.
Lithium tetraborate crystals have great demand due to its non‐critical phase matching at 90°. Transparent and good optical quality single crystals of undoped and Mn doped Li2B4O7 were grown by Czochralski technique in air atmosphere. The crystalline phase was determined by X‐ray diffraction. Doping of Mn in the grown crystals was confirmed by energy dispersive analysis of X‐rays (EDAX) technique. Transmission spectra show that the crystal is transparent in the visible region. Birefringence interferograms were recorded to qualitatively analyse the optical homogeneity of the grown crystals and to quantify the birefringence of the samples in desired crystal direction. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Bi12SiO20 crystals have been grown for the first time by the low-thermal gradient Czochralski technique in the 〈111〉 and 〈110〉 directions. The conditions for reproducible crystal growth with a high-quality polyhedral faceted front are found. The systematic features of shaping Bi12SiO20 and Bi12GeO20 crystals, grown by the low-thermal gradient Czochralski technique, are compared. The defect formation in these crystals is studied and their optical homogeneity is analyzed by interferometry.  相似文献   

8.
Heat and mass transfer taking place during growth of Y3Al5O12 (YAG) crystals by the Czochralski method, including inner radiation, is analyzed numerically using a Finite Element Method. For inner radiative heat transfer through the crystal the band approximation model and real transmission characteristics, measured from obtained crystals, are used. The results reveal significant differences in temperature and melt flow for YAG crystals doped with different dopands influencing the optical properties of the crystals. When radiative heat transport through the crystal is taken into account the melt‐crystal interface shape is different from that when the radiative transport is not included. Its deflection remains constant over a wide range of crystal rotation rates until it finally rapidly changes in a narrow range of rotation rates. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Cu:LiNbO3 crystal and Fe:Cu:LiNbO3 crystals were grown by the Czochralski method from congruent melt. The OH absorption spectrum of doped lithium niobate crystals was measured. The photorefractive properties of doped crystals were studied by the two‐wave coupling method. The results of the two‐wave coupling experiments showed that as the concentration of doping ions increased, the diffraction efficiency and the dynamic range enhanced, the holographic response time shortened. The recording time of Fe(0.10wt%): Cu(0.10wt%): LiNbO3 crystal is only a tenth of that of Cu(0.05wt%): LiNbO3 crystal. Among all samples, the dynamic range of the Fe(0.10wt%): Cu(0.10wt%): LiNbO3 crystal was the most largest (up to 40.78). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Single crystals of Lu1‐xScxBO3:Ce (x=0.2, 0.3, 0.5, 0.7) were grown by Czochralski method. Continuous solid solution with calcite structure and a linear compositional dependency of crystal lattice parameter in the system Lu1‐xScxBO3:Ce are formed and their symmetry belong to hexagonal system with R3c space group checked by X‐ray powder diffraction. The electron probe micro‐analysis measurements show that the main inclusions in Lu1‐xScxBO3:Ce crystals are in the form of Sc rich oxide and Ce rich oxide. The ICP‐AES tests show that the more Sc ion content in Lu1‐xScxBO3:Ce, the smaller effective segregation coefficient of Ce in crystal will be. The X‐ray excited luminescence spectra of Lu1‐xScxBO3:Ce crystals all present a double peaked emission band with maxima round 370 and 400 nm corresponding to Ce3+ emission and a self trapped excitons (STE) band peaking at 269 nm. In addition, due to high density, high relative light yield, fast decay time and no‐hygroscopic property, Lu0.8Sc0.2BO3:1 at%Ce crystal could be a good candidate material for scintillation application by improving the crystal quality and cerium concentration. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Congruent LiNbO3:Fe and LiNbO3:Mg,Fe crystals were grown by Czochralski method, and vapor transport equilibration technique was employed to improve the [Li]/[Nb] ratios of these crystals. The influence of stoichiometry and MgO dopant on the photorefractive sensitivity and response time of LiNbO3:Fe crystals was investigated. Both stoichiometry and MgO dopant can effectively reduce the amount of intrinsic defects, but MgO can also decrease the concentration of Fe2+ ions in Li‐sites. Near‐stoichiometric and MgO doped LiNbO3:Fe crystal has high photorefractive sensitivity and fast response time. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Large-diameter single crystals of TeO2 are grown by the Czochralski method in specially designed setups with automatic monitoring of the crystal growth. The degree of perfection of the grown crystals is examined using selective etching and X-ray topography (the Shultz method). The temperature dependence of the microhardness of TeO2 single crystals is investigated for different crystallographic planes, namely, (001), (100), and (110).  相似文献   

13.
The dislocations existing in single crystals of neodymium gallate and yttrium aluminate grown by the Czochralski technique have been studied by means of etch pits. The data concerning their solubility in cases of different directions of a face orientation, various treatment temperatures and several enchant types are reported. The investigation of etch pits in the twinned YAlO3 and NdGaO3 crystals showed that twins are formed during a growth process. In the [110]‐pulled NdGaO3 crystals the discrepancy between the twin and matrix parts of a crystal is accommodated by the dislocation congestion and the dislocation low‐angle boundaries whereas in [010]‐pulled YAlO3 crystals the microcracks perform this function.  相似文献   

14.
1 mol%, 2 mol%, 3 mol%, 4 mol% and 5 mol% In3+ doped LiNbO3 crystals were grown by the Czochralski method, respectively. Oxidized treatment of some crystals was carried out. The infrared transmission spectra and photo‐damage resistance of the samples were measured. The results showed that the OH absorption peaks of In(3mol%):LiNbO3, In(4mol%):LiNbO3 and In(5mol%):LiNbO3 crystals were located at about 3508 cm‐1, while those of In(1mol%):LiNbO3 and In(2mol%):LiNbO3 crystals were located at about 3484cm‐1. When the doped In3+ concentration reached its threshold in LiNbO3 crystal, photo‐damage resistance of In:LiNbO3 crystals was two orders of magnitude higher than that of pure LiNbO3 crystal. The experimental results of the second harmonic generation (SHG) showed that the phase matching temperatures of In:LiNbO3 crystals were lower than those of Zn:LiNbO3 and Mg:LiNbO3 crystals and the SHG efficiency reached 38%. Oxidization treatment was also found to make the dark trace resistance of crystals increase. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Single crystals of garnet Y3Al5O12 (YAG): Co and Co, Si were grown by Czochralski method as materials for optoelectronic applications. Silicon doping is responsible for the change of the Co3+ ions into Co2+ in order to keep charge neutrality of the material and for a coloration of materials. Magnetization and Electron Paramagnetic Resonance measurements show that the most cobalt ions in the silicon co‐doped crystals were Co2+ in octahedral positions. Estimated concentration of the Co2+ ions were close to Si4+ nominal concentration. A little excess of Co2+ may be ascribed to defects present in the crystals. For the crystal doped only with Co, the concentration of Co2+ was about 13% of the nominal Co amount and might be caused by crystal defects. X‐ray Photoelectron Spectroscopy measurements exhibit aluminium deficiency. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The results of three‐dimensional unsteady modeling of melt turbulent convection with prediction of the crystallization front geometry in liquid encapsulated Czochralski growth of InP bulk crystals and vapor pressure controlled Czochralski growth of GaAs bulk crystals are presented. The three‐dimensional model is combined with axisymmetric calculations of heat and mass transfer in the entire furnace. A comprehensive numerical analysis using various two‐dimensional steady and three‐dimensional unsteady models is also performed to explore their possibilities in predicting the melt/crystal interface geometry. The results obtained with different numerical approaches are analyzed and compared with available experimental data. It has been found that three‐dimensional unsteady consideration of heat and mass transfer in the crystallization zone provides a good reproduction of the solidification front geometry for both GaAs and InP crystal growth.  相似文献   

17.
18.
Zn:Mn:Fe:LiNbO3 crystals were prepared by Czochralski technique. Its microstructure was measured and analyzed by UV‐Vis absorption spectra. The optical damage resistance of Zn:Mn:Fe:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of ZnO is over a threshold concentration. Its value in Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is about three orders of magnitude higher that in the Mn:Fe:LiNbO3 crystal. The dependence of the defects on the optical damage resistance was discussed. The non‐volatile holographic storage was realized in all crystals, and the sensitivity of the Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is much higher than that of others. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The structure and properties of Czochralski (Cz)‐grown Ge1‐xSix mosaic crystals were investigated using optical microscopy, atomic force microscopy, X‐ray diffraction analysis, microprobe analysis, FTIR and transmission electron microscopy. The role of segregation, form of solid‐liquid interface and dislocation generation in the development of mosaic structure were analyzed and used for optimization of growth parameters such as Si concentration and growth rate. The dislocation density estimated experimentally was compared with the calculated data. Composition fluctuations caused by formation of cellular structure at the interface lead to a local lattice misorientation that is one of the reasons for crystal mosaicity. Model of mosaic structure generation in terms of dislocation density and composition variations is presented.  相似文献   

20.
Single crystals of KCl doped with RbCl have been grown by the Czochralski and Bridgman techniques. Czochralski crystals were grown in air, using platinum crucibles and Bridgman crystals were grown in a Trans-Temp glass furnace in air and also under a reactive atmosphere of CCl4 in argon. This reactive atmosphere process (RAP) is known to greatly reduce impurities, such as hydroxyl ions, which degrade optical quality. A series of KCl-RbCl-SrCl2 single crystals have been grown to stabilize microstructure. Some optical absorption and mechanical strength data is presented. An alternative approach to increase halide material strength is to hot-forge a single crystal under temperature and pressure sufficient to cause pressure-induced recrystallization (PIR). Hot-forging techniques to produce high-strength IR windows without degrading optical transmission are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号