首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary : An investigation was carried out into the cure kinetics of carbon nanofiber (CNF) mat-epoxy nanocomposites, composed of bisphenol-A based epoxy resin and diethylene triamine as a curing agent. It was observed that the rate of cure reaction for CNF mat-epoxy nanocomposites was higher than that for neat epoxy resin at low curing temperatures and the presence of the CNF mat produced the maximum influence at a certain curing temperature and time. At high curing temperature and long curing times, the effect of CNF mat on the cure rate was insignificant. The CNF mat-epoxy composite exhibited somewhat lower value of activation energy than that of the neat epoxy system at the beginning of the curing stage. The weight fraction of CNF mat also affected the cure reaction of epoxy nanocomposites at the same curing temperature. As the amount of CNF mat increased, the cure rate was higher at the same cure time. However, at high CNF mat loading, the cure reaction was retarded since the amount of epoxy and hardener decreased dramatically at high CNF contents together with the hindering effect of the CNF mat on the diffusion of epoxy resin and the curing agent, leading to lower crosslinking efficiency. Although the curing efficiency of epoxy nanocomposites dropped at high CNF mat content, the glass transition temperature (Tg) was still high due to the ultra-high strength of the CNF mat. The cure kinetics of CNF mat-epoxy nanocomposites was in good agreement with Kamal's model.  相似文献   

2.
Epoxy/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were obtained from octakis(glycidyldimethylsiloxy)octasilsesquioxane (OG) and diglycidyl ether of bisphenol A cured with small‐molecule curing agents of diethylphosphite (DEP) and dicyandiamide (DICY). An increase in the POSS contents of the nanocomposites and an improvement in the nanocomposite homogeneity were observed with the use of the small‐molecule curing agents. Phosphorus in DEP and nitrogen in DICY also performed synergism with POSS for thermal stability enhancement and flammability improvement in the nanocomposites. The nanocomposites possessing high OG contents exhibited good thermal stability, improved flammability, and high storage moduli. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3825–3835, 2006  相似文献   

3.
4.
Polyimide/diamond nanocomposites have been synthesized from 4,4′‐diaminodiphenyl ether (ODA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA). All the polyimides show non‐crystalline X‐ray diffraction. The frequent occurrence of particular interatomic distances (R) denoted by the non‐crystalline X‐ray diffraction maxima are determined. An ultramicro‐indentation technique is employed to evaluate the effects of nano‐diamond particles on the indentation behavior of polyimides. Indentation size effect is observed and discussed.

  相似文献   


5.
Summary: Epoxy nanocomposites containing rod‐like silicate (attapulgite) were prepared using a simple organic modification to the nanorods. The modification led to effective interfacial adhesion between the ceramic nanorods and the epoxy resin and hence good load transfer. Scanning electron microscopy examination revealed a uniform dispersion of nanorods in the epoxy resin. Compared to the neat resin, nanocomposites with 7.47 vol.‐% nanorods exhibited an increase in the (rubbery state) storage modulus of 122.5%. In addition, the nanocomposites exhibited improved dimensional stability both above and below the Tg.

Storage modulus of the neat resin and nanocomposites.  相似文献   


6.
Highly dispersed ZnO nanoparticles with variable particle sizes were successfully prepared within an amphiphilic hyperbranched polyetherpolyol matrix via decomposition of an organometallic precursor in the presence of air leading to stable nanocomposites. The high degree of stabilization during and after the synthesis by the polymer permits control over the nanoparticle size and therefore, due to the quantum‐size‐effect, the particle properties. Furthermore, these polymer‐inorganic nanocomposites can easily be dispersed in apolar solvents to yield highly transparent, stable solutions.

  相似文献   


7.
With differential scanning calorimetry, we have demonstrated a peculiar behavior under equilibrium conditions of neat poly(ε‐caprolactone) and its organophilic montmorillonite nanocomposites. In particular, in the determination of the equilibrium melting temperature by the extrapolation of the data of the melting temperature (Tm) versus the crystallization temperature (Tc), a bimodal trend has been observed. At the lower Tc's, the data of Tm follow a constant trend, whereas at the higher ones, the usual increasing trend has been obtained. Morphological observations by atomic force microscopy (AFM) have provided evidence of two different crystalline morphologies for the lower and higher Tc ranges. Moreover, AFM has shown that the thermal treatments strongly influence the clay dispersion in the polymer matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 22–32, 2006  相似文献   

8.
The current state‐of‐the‐art mixing strategies of nanoparticles with insulating polymeric components have only partially utilized the unique electrical conductivity of graphene in nanocomposite systems. Herein, this paper reports a nonmixing method of direct creation of polymer/graphene nanocomposites from polymer blends via laser irradiation. Polycarbonate‐laser‐induced graphene (PC‐LIG) nanocomposite is produced from a PC/polyetherimide (PC/PEI) blend after exposure to commercially available laser scribing with a power of ≈6 W and a speed of ≈2 cm s−1. Extremely high electrical conductivities are obtained for the PC‐LIG nanocomposites, ranging from 26 to 400 S m−1, depending on the vol% of the starting PEI phase in the blend. To the authors' knowledge, these conductivity values are at least one order of magnitude higher than the values that are previously reported for conductive polymer/graphene nanocomposites prepared via mixing strategies. The comprehensive microscopy and spectroscopy characterizations reveal a complete graphitization of the PEI phase with columnar microstructure embedded in the PC phase.  相似文献   

9.
Summary: Poly(2‐methoxyaniline‐5‐sulfonic acid) (PMAS) is a water‐soluble derivative of polyaniline that carries negatively charged sulfonate groups. This self‐doped conducting polymer also behaves like a polyelectrolyte that can subsequently function as a dopant in polyaniline (PAn). The chemical synthesis of PAn/PMAS is presented describing the preparation of a highly stable composite dispersion. TEM images reveal a mixture of well‐defined nanofibres and nanoparticles with diameters between 20 and 100 nm. The UV‐vis spectra of the PAn/PMAS composite in water and in alkaline media indicate that both PAn and PMAS are present in the composite. Electrochemical studies show that both of the conducting polymer components are capable of undergoing oxidation and reduction. The novel PAn/PMAS nanocomposite has enhanced electrical conductivity and stability compared to PAn/HCl nanofibres prepared under equivalent conditions, making it a promising material for applications in areas such as batteries, electronic textiles, electrochromics, and chemical sensors.

Transmission electron micrograph of a PAn/PMAS nanocomposite.  相似文献   


10.
Summary: In this work, a surface re-modified multi-walled carbon nanotube (MWNT) was prepared by the chemical attachment of oligomeric unsaturated polyester on the MWNT surface. The re-modified MWNT was incorporated in two concentrations of 0.35 and 0.70 Wt.% into epoxy resin in order to investigate its effect on morphology and mechanical behavior of the MWNT/epoxy nanocomposite. The transmission electron microscopy showed that the re-modification of MWNT surface improves its dispersion state in the epoxy matrix. The tensile measurements for the nanocomposite having different amounts of surface re-modified/not-modified MWNT showed that the fracture mechanism changed from brittle to tough beyond a certain amount of surface re-modified MWNT. The scanning electron microscopy findings on the fracture surface morphology of the resulted nanocomposite substantiated the observed phenomena.  相似文献   

11.
Summary: This investigation presents a simultaneous and convenient approach to produce a high‐performance polyimide with a low dielectric constant by introducing the octa‐acrylated polyhedral oligomeric silsesquioxane (methacrylated‐POSS) into a polyimide matrix to form polyimide semi‐interpenetrating polymer network (semi‐IPN) nanocomposites. The differential scanning calorimetry (DSC) and Fourier‐transform infrared (FT‐IR) results indicate that the self‐curing of methacrylated‐POSS and the imidization of polyamic acid (PAA) occurs simultaneously. The morphology of a semi‐IPN structure of polyimide/POSS‐PI/POSS nanocomposites with POSS nanoparticles embedded inside the matrix is elucidated. The POSS particles are uniform and are aggregated to a size of approximately 50–60 nm inside the polyimide matrix. The interconnected POSS particles are observed at high POSS content. The structure is highly cross‐linked, so the PI/POSS nanocomposites have an enhanced glass transition temperature. The high porosity of the PI/POSS nanocomposites markedly reduces the dielectric constant of PI because of the nanometer‐scale porous structure of POSS.

FT‐IR spectra of the various compounds of A) methacrylate‐POSS before curing, B) methacrylate‐POSS after curing, C) PAA containing 15 wt.‐% POSS, and D) PI/POSS containing 15 wt.‐% POSS.  相似文献   


12.
Summary: A new route that combines graft pre‐treatment and drawing techniques with melt mixing to prepare nanoparticle‐filled thermoplastic polymer composites is reported. Nano‐SiO2 particles are first modified by graft polymerization and then the grafted nanoparticles are melt‐compounded with poly(propylene) (PP) to produce composite filaments via drawing. Finally, the filaments are injection molded into bulk materials. Because the proposed manufacturing method is able to induce separation of the nanoparticles and the formation of beta‐crystals in the PP matrix, the resultant PP‐based nanocomposites are much tougher than the unfilled polymers, as characterized by either static or dynamic tests, in addition to showing a simultaneous increase in strength and stiffness.

Force–time curves of PP and its nanocomposites recorded during notch impact tests.  相似文献   


13.
Green nanocomposite coatings based on renewable plant oils have been developed. An acid‐catalyzed curing of epoxidized plant oils with 3‐glycidoxypropyltrimethoxysilane produced transparent nanocomposites. The hardness and mechanical strength improved by incorporating the silica network into the organic polymer matrix, and good flexibility was observed in the nanocomposite. The nanocomposites showed high biodegradability.

  相似文献   


14.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   

15.
Summary: Phantom chain MC simulations have been performed for realistically sized systems of polymer chains filled with solid nanoparticles. The results of the simulations and simple theoretical considerations are used to rationalize a number of parameters relevant to the characterization of these systems. Even when the average number of nanoparticles in contact with a chain is very small (much less than unity), the nanoparticles are nodes of highly interconnected transient networks bridged by the polymer chains.

  相似文献   


16.
Summary: Carbon nanotubes (CNTs) have been grown on MCM‐41 supported Fe nanoparticles and the as‐prepared (no further purification) CNT‐silica hybrid was directly incorporated into nylon‐6 (PA6) by simple melt‐compounding. The urchin‐shaped CNT‐silica hybrid filler was observed to be homogeneously dispersed throughout the matrix by scanning electron and transmission electron microscopy. Compared with neat PA6, the tensile modulus and strength of the composite are greatly improved by about 110%, with incorporation of only 1 wt.‐% CNT‐silica filler.

SEM image and schematic representation showing polymer chains wrapping around the urchin‐shaped CNT‐silica hybrid filler.  相似文献   


17.
We have examined the effects of crystallization kinetics of poly(3‐hexylthiophene) and poly[2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno(3,2‐b)thiophene] on microstructure and charge transport. Rapid crystallization increases the density of tie molecules in polythiophenes. As a consequence, ordered regions are better connected resulting in higher charge carrier mobilities. Our results suggest that controlling the crystallization kinetics might be an important factor for maximizing the charge mobility in semicrystalline polythiophene thin films.  相似文献   

18.
19.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   

20.
In this article, high impact polystyrene/organo Fe‐montmorillonite (HIPS/Fe‐OMT) nanocomposites were prepared by melting intercalation. The thermal stability of HIPS/Fe‐OMT nanocomposites increased significantly compared to that of HIPS examined in thermal degradation conditions. Kinetic evaluations were performed by Kissinger, Flynn‐Wall‐Ozawa, Friedman methods and multivariate nonlinear regression. Apparent kinetic parameters for the overall degradation were determined. The results showed that the activation energy of HIPS/Fe‐OMT nanocomposites was higher than that of HIPS. A very good agreement between experimental and simulated curves was observed in dynamic conditions. Their decomposition reaction model was a single‐step process of an nth‐order reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号