首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
本文综述了甲酸在铂电极上电催化氧化机理的实验和理论研究进展. 铂电极甲酸的电化学氧化主要有两种途径:1)间接途径,甲酸经由CO中间物氧化为最终产物CO2,室温下该途径对总电流贡献不超过1%;2)直接途径,甲酸直接氧化生成CO2. 作者课题组对文献中桥式吸附甲酸根是否是甲酸氧化反应直接途径的反应中间物的争论进行了详细的分析和探讨,认为桥式吸附的甲酸根不是间接途径中生成CO的前驱体,也不是甲酸直接氧化途径的中间物. 作者课题组还指出了支持甲酸根是甲酸直接氧化途径的反应中间物的推论的问题所在.  相似文献   

2.
Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.  相似文献   

3.
We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.  相似文献   

4.
The potential of in-situ Fourier transform infrared (FTIR) spectroscopy measurements in an attenuated total reflection configuration (ATR-FTIRS) for the evaluation of reaction pathways, elementary reaction steps, and their kinetics is demonstrated for formic acid electrooxidation on a Pt film electrode. Quantitative kinetic information on two elementary steps, formic acid dehydration and CO(ad) oxidation, and on the contributions of the related pathways in the dual path reaction mechanism are derived from IR spectroscopic signals in simultaneous electrochemical and ATR-FTIRS measurements over a wide temperature range (25-80 degrees C). Linearly and multiply bonded CO(ad) and bridge-bonded formate are the only formic acid related stable reaction intermediates detected. With increasing temperature, the steady-state IR signal of CO(ad) increases, while that of formate decreases. Reaction rates for CO(ad) formation via formic acid dehydration and for CO(ad) oxidation as well as the activation energies of these processes were determined at different temperatures, potentials, and surface conditions (with and without preadsorbed CO from formic acid dehydration) from the temporal evolution of the IR intensities of CO(ad) during adsorption/reaction transients, using an IR intensity-CO(ad) coverage calibration. At potentials up to 0.75 V and temperatures from 25 to 80 degrees C, the "indirect" CO pathway contributes less than 5% (at potentials < or =0.6 V significantly below 1%) to the total Faradaic reaction current, making the "direct" pathway by far the dominant one under the present reaction conditions. Much higher activation energies for CO(ad) formation and CO(ad) oxidation compared with the effective activation energy of the total reaction, derived from the Faradaic currents, support this conclusion.  相似文献   

5.
The determination of kinetic isotope effects (KIEs) for different reaction pathways and steps in a complex reaction network, where KIEs may affect the overall reaction in various different ways including dominant and minority pathways or the buildup of a reaction-inhibiting adlayer, is demonstrated for formic acid electrooxidation on a Pt film electrode by quantitative electrochemical in situ IR spectroscopic measurements under controlled mass-transport conditions. The ability to separate effects resulting from different contributions--which is not possible using purely electrochemical kinetic measurements--allows conclusions on the nature of the rate-limiting steps and their transition state in the individual reaction pathways. The potential-independent values of approximately 1.9 for the KIE of formic acid dehydration (CO(ad) formation) in the indirect pathway and approximately 3 for the CO(ad) coverage-normalized KIE of formic acid oxidation to CO2 (direct pathway) indicate that 1) C-H bond breaking is rate-limiting in both reaction steps, 2) the transition states for these reactions are different, and 3) the configurations of the transition states involve rather strong bonds to the transferred D/H species, either in the initial or in the final state, for the direct pathway and--even more pronounced--for formic acid dehydration (CO(ad) formation).  相似文献   

6.
The electrooxidation of formic acid on Pt and other noble metal electrodes proceeds through a dual-path mechanism, composed of a direct path and an indirect path through adsorbed carbon monoxide, a poisoning intermediate. Adsorbed formate had been identified as the reactive intermediate in the direct path. Here we show that actually it is also the intermediate in the indirect path and is, hence, the key reaction intermediate, common to both the direct and indirect paths. Furthermore, it is confirmed that the dehydration of formic acid on Pt electrodes requires adjacent empty sites, and it is demonstrated that the reaction follows an apparently paradoxical electrochemical mechanism, in which an oxidation is immediately followed by a reduction.  相似文献   

7.
The mechanism of formic acid electrooxidation on iron tetrasulfophthalocyanine (FeTSPc) modified Pt electrode was investigated with electrochemical methods. It was found that a “third-body” effect of FeTSPc on Pt electrode predominates during the electrooxidation process based on unusual electrochemical results. The modification leads formic acid electrooxidation to take place through a desired direct pathway, in which the mechanism is proposed to be the gradual dehydrogenation of formic acid and the reaction of formate with hydroxyl species.  相似文献   

8.
The kinetics of many electrode reactions, especially those involving the consumption/production of H+/OH?, show significant pH dependence. Systematic studies of the pH effect over a wide pH range can provide very useful information about their reaction mechanism(s) and help figure out the optimum reaction conditions. For fast electrode reactions in solutions of medium pH and low buffer capacity, correcting the effects induced from the shift of local pH near the electrode?electrolyte interface (pHs) is a prerequisite for unraveling the intrinsic kinetics and its pH dependence. In this review, recent progress on how to estimate the pHs, how to eliminate the effect induced by pHs shift and how to deduce the pH dependent intrinsic reaction kinetics are summarized. Mechanistic and kinetic implication of pH effect on electrocatalytic processes will be discussed by taking formic acid/formate oxidation at Pt electrode as an example.  相似文献   

9.
甲酸在钯微粒修饰聚苯胺电极上氧化的协同效应研究   总被引:5,自引:0,他引:5  
Electrochemical oxidation of formic acid on PAN(Pd) electrode has been studied using conventional electrochemical techniques and the electrochemical in-situ FTIR. The process of electrochemical oxidation of PAN(Pd) electorde has been put forward. The kinetic parameters of different thickness of PAN film such as diffusion coefficient (D0) and reaction rate constant(k0) have been calculated. Furthermore, the causes of the difference between PAN(Pd) and pure Pd(or Pt) electrodes as well as the high electrocatalytic activation of PAN(Pd) electrode for oxidation of fomic acid have also been discussed. The high catalytic activation of PAN(Pd) electrode for oxidation of formic acid probably comes from the synergistic effect of the subcatalytic interaction of PAN and the catalytic interaction of the palladium microparticles.  相似文献   

10.
The oxidation of formic acid and carbon monoxide was studied at a gold electrode by a combination of electrochemistry, in situ surface-enhanced Raman spectroscopy (SERS), differential electrochemical mass spectrometry, and first-principles DFT calculations. Comparison of the SERS results and the (field-dependent) DFT calculations strongly suggests that the relevant surface-bonded intermediate during oxidation of formic acid on gold is formate HCOO- ad*. Formate reacts to form carbon dioxide via two pathways: at low potentials, with a nearby water to produce carbon dioxide and a hydronium ion; at higher potentials, with surface-bonded hydroxyl (or oxide) to give carbon dioxide and water. In the former pathway, the rate-determining step is probably related to the reaction of surface-bonded formate with water, as measurements of the reaction order imply a surface almost completely saturated with adsorbate. The potential dependence of the rate of the low-potential pathway is presumably governed by the potential dependence of formate coverage. There is no evidence for CO formation on gold during oxidation of formic acid. The oxidation of carbon monoxide must involve the carboxyhydroxyl intermediate, but SERS measurements do not reveal this intermediate during CO oxidation, most likely because of its low surface coverage, as it is formed after the rate-determining step. Based on inconclusive spectroscopic evidence for the formation of surface-bonded OH at potentials substantially below the surface oxidation region, the question whether surface-bonded carbon monoxide reacts with surface hydroxyl or with water to form carboxyhydroxyl and carbon dioxide remains open. The SERS measurements show the existence of both atop and bridge-bonded CO on gold from two distinguishable low-frequency modes that agree very well with DFT calculations.  相似文献   

11.
We have modeled temporal potential oscillations during the electrooxidation of formic acid on platinum on the basis of the experimental results obtained by time-resolved surface-enhanced infrared absorption spectroscopy (J. Phys. Chem. B 2005, 109, 23509). The model was constructed within the framework of the so-called dual-path mechanism; a direct path via a reactive intermediate and an indirect path via strongly bonded CO formed by dehydration of formic acid. The model differs from earlier ones in the intermediate in the direct path. The reactive intermediate in this model is formate, and the oxidation of formate to CO2 is rate-determining. The reaction rate of the latter process is represented by a second-order rate equation. Simulations using this model well reproduce the experimentally observed oscillation patterns and the temporal changes in the coverages of the adsorbed formate and CO. Most properties of the voltammetric behavior of formic acid, including the potential dependence of adsorbate coverages and a negative differential resistance, are also reproduced.  相似文献   

12.
The mechanism of temporal potential oscillations that occur during galvanostatic formic acid oxidation on a Pt electrode has been investigated by time-resolved surface-enhanced infrared absorption spectroscopy (SEIRAS). Carbon monoxide (CO) and formate were found to adsorb on the surface and change their coverages synchronously with the temporal potential oscillations. Isotopic solution exchange (from H13COOH to H12COOH) and potential step experiments revealed that the oxidation of formic acid proceeds dominantly through adsorbed formate and the decomposition of formate to CO2 is the rate-determining step of the reaction. Adsorbed CO blocks the adsorption of formate and also suppresses the decomposition of formate to CO2, which raises the potential to maintain the applied current. The oxidative removal of CO at a high limiting potential increases the coverage of formate and accelerates the decomposition of formate, resulting in a potential drop and leading to the formation of CO. This cycle repeats itself to give the sustained temporal potential oscillations. The oscillatory dynamics can be explained by using a nonlinear rate equation originally proposed to explain the decomposition of formate and acetate on transition metal surfaces in UHV.  相似文献   

13.
Based on detailed in situ attenuated total‐reflection–surface‐enhanced IR reflection absorption spectroscopy (ATR‐SEIRAS) studies of the methanol oxidation reaction (MOR) on Ru/Pt thin film and commercial Johnson–Matthey PtRu/C, a revised MOR enhancement mechanism is proposed in which CO on Pt sites is irrelevant but instead Pt‐Ru boundary sites catalyze the oxygen insertion reaction that leads to the formation of formate and enhances the direct reaction pathway.  相似文献   

14.
Heterogeneous catalysts are often designed as metal nanoparticles supported on oxide surfaces. Here, the relation between particle morphology and reaction kinetics is investigated by scaling relation kinetic Monte Carlo simulations using CO oxidation over Pt nanoparticles as a model reaction. We find that different particle morphologies result in vastly different catalytic activities. The activity is strongly affected by kinetic couplings between sites, and a wide site distribution generally enhances the activity. The present study highlights the role of site‐assemblies as a concept that, in addition to isolated active sites, can be used to understand catalytic reactions over nanoparticles.  相似文献   

15.
Pt/TiO2光催化分解甲酸制氢反应的原位红外光谱研究   总被引:2,自引:0,他引:2  
用原位红外光谱研究了无氧条件下Pt/TiO2光催化甲酸制氢反应机理.结果表明,物理吸附的甲酸物种在光催化反应过程中向甲酸根离子转化,而甲酸根离子则逐渐向碳酸盐物种转化.水蒸气的添加显著促进了甲酸在Pt/TiO2上光催化反应的进行,并提高了产氢效率.提出了该光催化反应的可能机理.  相似文献   

16.
Structural effects on the rates of formic acid oxidation have been studied on Pd(111), Pd(100), Pd(110), and Pd(S)-[n(100) x (111)] (n = 2-9) electrodes in 0.1 M HClO4 containing 0.1 M formic acid with use of voltammetry. On the low index planes of Pd, the maximum current density of formic acid oxidation (jP) increases in the positive scan as follows: Pd(110) < Pd(111) < Pd(100). This order differs from that on the low index planes of Pt: Pt(111) < Pt(100) < Pt(110). Pd(S)-[n(100) x (111)] electrodes with terrace atomic rows n > or = 3 have almost the same jP as Pd(100), except Pd(911) n = 5. The value of jP on Pd(911) n = 5 is 20% higher than those of the other surfaces. Pd(311) n = 2, of which the first layer is composed of only step atoms, has the lowest jP in the Pd(S)-[n(100) x (111)] series. The adsorption geometry of the reaction intermediate (formate ion) is optimized by using density functional theory.  相似文献   

17.
Butylphenyl-functionalized Pt nanoparticles (Pt-BP) with an average core diameter of 2.93 ± 0.49 nm were synthesized by the co-reduction of butylphenyl diazonium salt and H(2)PtCl(4). Cyclic voltammetric studies of the Pt-BP nanoparticles showed a much less pronounced hysteresis between the oxidation currents of formic acid in the forward and reverse scans, as compared to that on naked Pt surfaces. Electrochemical in situ FTIR studies confirmed that no adsorbed CO, a poisoning intermediate, was generated on the Pt-BP nanoparticle surface. These results suggest that functionalization of the Pt nanoparticles by butylphenyl fragments effectively blocked the CO poisoning pathway, most probably through third-body effects, and hence led to an apparent improvement of the electrocatalytic activity in formic acid oxidation.  相似文献   

18.
The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).  相似文献   

19.
The electro-oxidation of methanol on a Pt thin film electrode in acidic solution has been investigated by in situ surface-enhanced IR absorption spectroscopy. A new IR peak is observed at around 1320 cm-1 when the electrode potential is more positive than 0.5 V, where the bulk oxidation of MeOH occurs. This peak has been assigned to the symmetric stretching of formate species adsorbed on the Pt electrode surface. It is the first observation of formate adsorption during the electro-oxidation of methanol on a Pt surface. A near proportional relationship between the intensity of the IR band of the formate species and MeOH electro-oxidation current is observed. A new reaction scheme via non-CO pathway with formate as the active intermediate is proposed for the methanol electro-oxidation process.  相似文献   

20.
运用电化学暂态方法和现场时间分辨FTIR反射光谱研究甲酸在Pt(100)单晶电极上的解离吸附和氧化过程,深入认识了甲酸解离吸附的反应速率在-0.25至0.25V电位区间呈火山形变化的规律。根据电化学现场时间分辨红外光谱的研究结果,提出在研究反动力学时避免甲酸解离吸附干扰的方法,为进一步研究甲酸在Pt(100)电极表面经活性中间体直接氧化至CO2的反应动力学奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号