首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of dialkylphosphites to methylvinylketone giving dialkyl‐3‐oxobutylphos‐ phonates was studied applying different reagents, such as NaOR/ROH, NaOH/H2O under PTC, DBU, and R3Al (R = Me, Et) under different conditions to find the optimum choice regarding efficiency and selectivity. Possible extensions to a few other model compounds were also investigated. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:226–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20266  相似文献   

2.
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008  相似文献   

3.
A series of triphenylarsenic(V) derivatives Ph3As(OPri)[SC6H4N:C(R)CH2C(O)R′] have been synthesized by the reactions of triphenylarsenic(V)‐ isoproproxide, Ph3As(OPri)2 with the corresponding 2,2‐disubstituted benzothiazolines of the type (where R = CH3, R′ = CH3( 1 ); R = CH3, R′ = C6H5( 2 ); R = CH3, R′ = 4‐CH3C6H4( 3 ); R = CH3, R′ = 4‐ClC6H4( 4 ); and R = CF3, R′ = C6H5( 5 )) in equimolar ratio in refluxing benzene solution. Molecular weight measurements of these complexes show their monomeric nature in solution. Characterization of these compounds using elemental analyses, molecular weight measurements, and spectral studies (IR as well as NMR (1H and 13C)) shows the monofunctional bidentate nature of the ligands and a hexacoordination around the central arsenic atom in these organoarsenic(V) derivatives. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:76–80, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20233  相似文献   

4.
Some new types of mononuclear derivatives, AlL(1–4)L(1–4)H ( 1a–1d ) of aluminium were synthesized by the reaction of Al(OPri)3 and LH2 [XC(NYOH)CHC(R)OH], X = CH3, Y = (CH2)2, R = CH3(L1H2); X = C6H5, Y = (CH2)2, R = CH3(L2H2); X = CH3, Y = (CH2)3, R = CH3(L3H2); X = C6H5, Y = (CH2)3, R = CH3(L4H2) in 1:2 molar ratio in refluxing benzene. Reactions of AlL(1–4)L(1–4)H with hexamethyldisilazane in 2:1 molar ratio yielded some new ligand bridged heterodinuclear derivatives AlL(1–4)L(1–4)SiMe3 ( 2a – 2d ). All these newly synthesized derivatives were characterized by elemental analysis and molecular weight measurements. Tentative structures were proposed on the basis of IR and NMR spectra (1H, 13C, 27 Al and 29Si) and FAB‐mass studies. Schiff base ligands and their mono‐ and heterodi‐nuclear derivatives with aluminium have been screened for fungicidal activities. These compounds showed significant antifungal activity against Aspergillus niger and A. flavus. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Polymerization of diazoketones mediated by organoaluminum compounds was investigated. Trialkylaluminum R3Al (R = iBu, Et, Me) and diisobutylaluminum hydride (DIBAL) polymerized (E)‐1‐diazo‐3‐nonen‐2‐one ( 1 ) to give polymers with Mn = 2000–3500, which contained nearly 33 mol % of azo group (? N?N? ) along with the dominant acylmethylene unit in the main chain. On the other hand, when (E)‐1‐diazo‐4‐phenyl‐3‐buten‐2‐one ( 2 ) was used as a monomer for the organoaluminum‐mediated polymerization, the resulting polymers had ethylidene (? CH[CH3]? ) units in the main chain along with acylmethylene and azo group, as a result of reductive cleavage of the acyl group during the polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5209–5214, 2007  相似文献   

6.
The utility of diphenylphosphonoacetamides [(PhO)2P(O)CH2CONRR′] as Horner–Wadsworth–Emmons reagents was examined with five different patterns of substitution upon the amide nitrogen atom ( 2a : R, R′ = CH2Ph; 2b : R = CH2Ph, R′ = H; 2c : R = Me, R′ = OMe; 2d : R, R′ = Ph; 2e : R, R′ = (CH2)4). The reaction of 2a was found to be Z‐selective for aromatic aldehydes with selectivities up to 95:5. Reagent 2b led to reasonable selectivity for both benzaldehyde (85:15) and 3‐phenylpropionaldehyde (87:13), while 2c was somewhat effective for only the latter alkyl aldehyde (83:17). Compounds 2d and 2e exhibited slightly lower selectivities compared with 2a . © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:515–523, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20054  相似文献   

7.
A series of organotin(IV) thiocarboxylates have been synthesized with the general formula R2SnL2 and R3SnL (R = Ph2(I), Me3(II), n‐Bu3(III), Ph3(IV), Cy3(V), Me2(VI), n‐Bu2(VII), and L = piperidine‐1‐thiocarboxylic acid) in anhydrous toluene under the reflux conditions. The complexes were characterized by microanalysis, IR, 1H and 13C NMR, mass spectrometry, and XRD. NMR data revealed that thiocarboxylic acid acts as bidentate, and complexes exhibit the four‐coordinated geometry in solution state. In solid state, diorganotin complexes exhibit the hexa‐coordinated geometry whereas the triorganotin(IV) compounds show the five‐coordinated geometry. These complexes were also tested for their antimicrobial activity along with the ligand against different animals, plant pathogens, and Artemia salina. All complexes with few exceptions show high activity as compared to the ligand. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:664–674, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20380  相似文献   

8.
A new, facile, and efficient one‐pot deprotection–cyclocondensation method is presented for the Biginelli reaction from aryl acylals or aryl aldehyde bisulfites in the presence of catalytic amounts of Bi(NO3)3 ⋅ 5H2O under solvent‐free conditions. In addition, high levels of chemoselectivity for this synthesis have been achieved. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:684–687, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20352  相似文献   

9.
Activation of ansa‐zirconocenes of the type Rac [Zr{1‐Me2Si(3‐R‐(η5‐C9H5))(3‐R′‐(η5‐C9H5))}Cl2] [R = Et, R′ = H ( 1 ); R = Pr, R′ = H ( 2 ); and R = Et, R′ = Pr ( 3 ), R, R′ = Me ( 4 ) and R, R′ = Bu ( 5 )] by MAO has been studied by UV–visible spectroscopy. Compounds 1–3 have been tested in the polymerization of ethylene at different Al:Zr ratios. UV–vis spectroscopy was used to determine a correlation between the electronic structures of ( 1–5 ) and their polymerization activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this study phenylselenocyanate and some of its derivatives (o‐Cl, p‐Cl, p‐Br, o‐NO2, p‐NO2, o‐CH3, p‐CH3, o‐COOH, p‐COOH, p‐OCH3 substituted) were synthesized ( 3a–3j ). The synthesized compounds were converted to 5‐aryl‐1H‐tetrazole ( 4a–4j ), by Et3N ċ HCl‐NaN3 in toluene, which are a new series of phenylselanyl‐1H‐tetrazoles. The structure of all the presently synthesized compounds were confirmed using spectroscopic methods (FTIR, 1H NMR, MS). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:255–258, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20293  相似文献   

11.
A new series of organotellurium(IV) compounds based on di(cyclohexylmethyl)telluride ( 1 ) (i.e., (C6H11CH2)2TeX2 and (C6H11CH2)2Te(R)X) was prepared by the reaction of compound 1 with halogens, N‐bromosuccinimide, and alkyl halides. Phenylation of (C6H11CH2)2TeX2 with sodium tetraphenylborate gave di(cyclohexylmethyl)phenyltelluronium tetraphenylborate in good yield. Conductivity measurements in dimethylsulfoxide (DMSO) showed a considerable ionic character of these compounds and they behave as 1:1 electrolytes. 1H NMR studies in CDCl3 solution indicated that telluronium salts employed in this study are unstable toward reductive elimination. Reaction of di(cyclohexylmethyl)telluride, (C6H11CH2)2Te(CH3)I, and (C6H11CH2)2Te(PhCH2)Br with HgX2 (X = Cl or Br) afforded 1:1 complexes. All compounds were characterized by elemental analyses and spectroscopic data. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:93–99, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20240  相似文献   

12.
Novel chiral N‐propargylphosphonamidate monomers (HC?CCH2NHP(?O)R? O? menthyl, 1 : R = CH3, 2 : R = C2H5, 3 : R = n‐C3H7, 4 : R = Ph) were synthesized by the reaction of the corresponding phosphonic dichlorides with menthol and propargylamine. Pairs of diastereomeric monomers 1 – 4 with different ratios were obtained due to the chiral P‐center and menthyl group. One diastereomer could be separated from another one in the cases of monomers 1 and 2 . Polymerization of 1 – 4 with (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in CHCl3 gave the polymers with number‐average molecular weights ranging from 5000 to 12,000 in 65–85%. Poly( 1 )–poly( 4 ) exhibited quantitative cis contents, and much larger specific rotations than 1 – 4 did in CHCl3. The polymers showed an intense Cotton effect around 325 nm based on the conjugated polyacetylene backbone. It was indicated that the polymers took a helical structure with predominantly one‐handed screw sense, and intramolecular hydrogen bonding between P?O and N? H of the polymers contributed to the stability of the helical structure. Poly( 1a ) and poly( 2a ) decreased the CD intensity upon raising CH3OH content in CHCl3/CH3OH. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1515–1524, 2007  相似文献   

13.
Four triorganotin(IV) complexes with 2‐mercaptopyrimidine (HSpym) and 4‐amino‐2‐mercaptopyrimidine (HSapym) of the type, R3SnL (L= Spym, R=Ph, 1; R=PhCH2, 2; L=Sapym, R=Ph, 3; R=PhCH2, 4), were synthesized. All the complexes 1–4 have been characterized by elemental, IR, 1H NMR, and X‐ray crystallography diffraction analyses, which revealed that the structures of 1–4 are penta‐coordinated with R3Sn‐coordinated to the thiol S and heterocyclic N atoms, and the structural distortion for each is a displacement from tetragonal toward trigonal bipyramidal geometry. The complex 1 is a one‐dimensional chain complex, while compounds 3 and 4 are dimers due to the existence of N···H hydrogen bonding. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:69–75, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20068  相似文献   

14.
Four triorganotin complexes of the types [(R3Sn)2(C2H2S2)(COOH)2] ⋅ 2Et2O (R = Ph, 1 ) and (R3Sn)2(C2H2S2)(COOH)2 (R = Me 2 , R = n‐Bu 3 , and R = PhCH2 4 ) have been obtained by the reaction of meso‐dimercaptosuccinic acid and sodium ethoxide with triorganotin(IV) chloride in 1:2:2 stoichiometry. All the complexes were characterized by elemental analyses, IR spectroscopy, and NMR spectroscopy. Furthermore, complexes 1 and 2 were characterized by X‐ray diffraction analyses, which revealed that complexes 1 and 2 are mononuclear structures and further interlinked by intermolecular C H⋅⋅⋅O and O H⋅⋅⋅O hydrogen bonds, respectively. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:50–55, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20511  相似文献   

15.
The ring‐opening metathesis polymerizations (ROMP), using RuCl2 (PCy3)2CHPh, of a series of peptide‐functionalized norbornene derivatives have been investigated. Incorporation of a PEG‐monomer was found to prevent premature precipitation of polymer strands during the course of polymerization reactions and yield water compatible polymers in high conversions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3178–3190, 2007  相似文献   

16.
9‐Arylacridine‐1,8‐dione derivatives were prepared in an ionic liquid medium in the presence of CeCl3 ċ 7H2O through an one‐pot procedure. The method presented here has the advantages of environmental benignancy, good‐to‐excellent yields, and simple operational procedure. Moreover, the solvent and catalyst can be easily recovered and reused for several runs without obvious loss of activity. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:786–790, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20410  相似文献   

17.
Dry chitosan is an excellent candidate for facilitated transport membranes that can be utilized in industrial applications, such as fuel cell operations and other purification processes. This article is the first to report temperature effects on transport properties of CO2, H2, and N2 in a gas mixture typical of such applications. At a feed pressure of 1.5 atm, CO2 permeabilities increased (0.381–26.1 barrers) at temperatures of 20–150 °C with decreasing CO2/N2 (19.7–4.55) and CO2/H2 (3.14–1.71) separation factors. The pressure effect on solubilities and permeabilities were fitted to the extended dual mode model and its corresponding mixed gas permeation model. The dual mode and transport parameters, the sorption heats and the activation energies of Henry's and Langmuir's regimes and their pre‐exponential parameters were determined. The Langmuir's capacity constants were utilized to estimate chitosan's glass transition temperature (CO2: 172 °C, N2: 175 °C, and H2: 171 °C). The activation energies of diffusion in the Henry's law and Langmuir regimes were dependent on the collision diameter of the gases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2620–2631, 2007  相似文献   

18.
Semiempirical calculations have been carried out on the interactions of [R2Sn(H2O)2]2+, [R = H(CH2)n: n = 1–8], mainly with five nucleotides, 5′‐adenosine monophosphate (5′‐AMP), but also with guanosine 5′‐monophosphate (5′‐GMP), cytidine 5′‐monophosphate (5′‐CMP), uridine‐5′‐monophosphate (5′‐UMP) and inosine 5′‐monophosphate (5′‐IMP). The preferred sites of interaction were calculated to be the ribose O2 and O3 hydroxyl oxygens and/or the phosphate oxygens, with the nitrogen sites in the bases the least attractive to the tin compounds. This is in general agreement with experimental findings. Structures of the 1:1 coordination complexes vary from distorted tetrahedral, to distorted trigonal pyramidal to distorted octahedral geometries. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A series of organotin(IV) complexes with 2‐mercapto‐5‐methyl‐1,3,4‐thiadiazole (HL) of the type R3 Sn(L) (R = Me 1 ; Bu 2 ; Ph 3 ; PhCH2 4 ) and R2Sn(L)2 (R = CH3 5 ; Ph 6 ; PhCH2 7 ; Bu 8 ) have been synthesized. All complexes 1–8 were characterized by elemental analysis, IR,1H, 13 C, and 119Sn NMR spectra. Among these, complexes 1 , 3 , 4 , and 7 were also determined by X‐ray crystallography. The tin atoms of complexes 1 , 3 , and 4 are all penta‐coordinated and the geometries at tin atoms of complexes 3 and 4 are distorted trigonal–bipyramidal. Interestingly, complex 1 has formed a 1D polymeric chain through Sn and N intermolecular interactions. The tin atom of complex 7 is hexa‐coordinated and its geometry is distorted octahedral. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:353–364, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20215  相似文献   

20.
The di‐ium dication formed by triflic acid protonation of the cyclic triphosphenium ion derived from 1,4‐bis‐diphenylphosphinobutane, (dppb), and P3(X = Br or Cl) decomposes via an acyclic dication bearing a  PHX group; this intermediate is reduced by SnX2 in the presence of HX to yield a dication with a  PH2 primary phosphane terminal group, which is comparatively stable. The structure of this species has been unequivocally confirmed by 31P solution‐state NMR spectroscopy. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:609–612, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20302  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号