首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of zinc oxide were deposited by dc reactive magnetron sputtering onto glass substrates held at a temperature of 663 K and oxygen partial pressure of 1x10‐3 mbar, and at different sputtering pressures in the range 3x10‐2 ‐ 10x10‐2 mbar. The effect of sputtering pressure on the structural, electrical and optical properties of the films were systematically studied. The films were polycrystalline in nature with preferred (002) orientation. The temperature dependence of Hall mobility indicated that the grain boundary scattering of the charge carriers are predominant in these films. The films formed at a sputtering pressure of 6x10‐2 mbar showed a low electrical resistivity of 6.9x10‐2 Ohm cm, optical transmittance of 83% with an optical band gap of 3.28 eV.  相似文献   

2.
The Al‐doped zinc oxide (ZnO:Al) thin films were grown on glass substrates by the magnetron sputtering technique. The films were characterized with X‐ray diffractometer, four‐point probe and optical transmission spectroscopy, respectively. The dependence of microstructural, electrical and optical properties on deposition temperature was investigated. The results show that all the films have hexagonal wurtzite structure with highly c‐axis orientation. And the microstrural and optoelectrical properties of the films are observed to be subjected to the deposition temperature. The ZnO:Al film prepared at the deposition temperature of 650 K possesses the best optoelectrical properties, with the lowest electrical resistivity (6.1×10−4 Ω·cm), the highest average visible transmittance (85.3%) and the maximum figure of merit (0.41 Ω−1). The optical energy gap of the films was estimated from Tauc's law and observed to be an increasing tendency with the increment of the deposition temperature. Furthermore, the refractive index of the films was determined by the optical characterization methods and the dispersion behavior was studied by the single electronic oscillator model.  相似文献   

3.
Transparent conductive gallium‐doped zinc oxide (Ga‐doped ZnO) films were prepared on glass substrate by magnetron sputtering. The influence of substrate temperature on structural, optoelectrical and surface properties of the films were investigated by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), spectrophotometer, four‐point probe and goniometry, respectively. Experimental results show that all the films are found to be oriented along the c‐axis. The grain size and optical transmittance of the films increase with increasing substrate temperature. The average transmittance in the visible wavelength range is above 83% for all the samples. It is observed that the optoelectrical property is correlated with the film structure. The Ga‐doped ZnO film grown at the substrate temperature of 400 °C has the highest figure of merit of 1.25 × 10−2 Ω−1, the lowest resistivity of 1.56 × 10−3 Ω·cm and the highest surface energy of 32.3 mJ/m2.  相似文献   

4.
Zinc oxide films were deposited on glass substrates in argon and oxygen atmosphere by dc reactive magnetron sputtering using a metallic zinc target. The influence of oxygen pressure and substrate temperature on the structure and optical properties of the films were systematically investigated and optimised the deposition parameters to prepare single phase zinc oxide films with preferred (002) orientation. At an optimum oxygen pressure of 1x10-3 mbar and substrate temperature of 663 K, the films exhibited an optical transmittance of 83% with a band gap of 3.28 eV.  相似文献   

5.
A comparison of the properties between Tin‐doped Indium Oxide (ITO) films fabricated by sputtering and spray pyrolysis is presented. This analysis shows that the ITO films fabricated by DC magnetron sputtering in pure argon gas requires of a subsequent annealing for the improvement of their structural, electrical and optical properties, when they are compared to films fabricated by single‐stage spray pyrolysis process that includes a new approach. The optimum annealing temperature for ITO films sputtered at room temperature lies in the 300‐350 °C range. Under such conditions, the ITO sputtered films are slightly more resistive than the resistivity (2 × 10‐4 Ω‐cm) shown by films sprayed at 480 °C using a solution with a 5 % of tin to indium ratio, and almost four times the worst value of the combination of transparency and conductivity determined by the value of the figure of merit (FOM). The sprayed films have a high value of the FOM, 2.9×10‐2 Ω‐1, which is comparable with the best published results.  相似文献   

6.
Titanium dioxide films have been deposited using DC magnetron sputtering technique. Films were deposited onto RCA cleaned p‐silicon substrates at the ambient temperature at an oxygen partial pressure of 7 × 10–5 mbar and sputtering pressure of 1 × 10 –3 mbar. The deposited films were annealed in the temperature range 673–873 K. The structure and composition of the films were confirmed using X‐ray diffraction and Auger electron spectroscopy. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature.  相似文献   

7.
Zinc oxide thin films were deposited on p‐type (100) silicon and Corning glass substrate by using RF magnetron sputtering at different sputter powers range 100–200 W and sputter pressures range 2–8 Pa. The deposited films were characterized by X‐ray diffraction, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscope and UV‐Vis‐NIR spectrophotometer. The films formed at sputter power of 100 W consists of weak (100) reflection and then sputter power increased to 150 W additional (110) reflection was present with enhancement in the intensity of (100) peak. Further increase of sputtering power to 200 W the intensity of (100) phase decreased with the presence of additional peaks of (002) and (101) of ZnO. The FTIR analysis confirms the Zn‐O absorption band was located at 414 cm‐1. The optical band gap of zinc oxide films decreased from 3.28 to 3.07 eV with increase of sputter power from 100 to 200 W. The maximum crystallite size of 21 nm, the root mean square roughness of 7.2 nm was found at films formed at working pressure of 5 Pa. The optical transmittance of the films increased from 88 to 96% and then decreased to 84% with increase of sputter pressure from 2 to 8 Pa.  相似文献   

8.
Titanium dioxide films have been deposited using DC magnetron sputtering technique onto silicon substrates at an ambient temperature and at an oxygen partial pressure of 7 × 10 –5 mbar and sputtering pressure (Ar + O2) of 1 × 10 –3 mbar. The deposited films were calcinated at 673 and 773 K. The composition of the films as analyzed using Auger Electron Spectroscopy (AES) revealed the stoichiometry with an O and Ti ratio of 2.08. The influence of post‐deposition calcination on the Raman scattering of the films was studied. The existence of Raman active modes A1g, B1g and Eg corresponding to the Raman shifts are reported in this paper. The improvement of crystallinity of the TiO2 films as shown by the Raman scattering studies has also been reported. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Nano‐crystalline silver oxide films were deposited on glass and silicon substrates held at room temperature by RF magnetron sputtering of silver target under different oxygen partial pressures. The influence of oxygen partial pressure on the structural, morphological, electrical and optical properties of deposited films was investigated. Varying oxygen partial pressure during the sputter deposition leads to changes of mixed phase of Ag2O and Ag to a single phase of Ag2O and to AgO. The X‐ray diffraction and X‐ray photoelectron spectroscopy results showed the formation of single phase Ag2O with cubic structure at oxygen partial pressures of 2x10‐2 Pa while the films deposited at higher oxygen partial pressure of 9x10‐2 Pa showed the formation of single phase of AgO with monoclinic structure. Raman spectroscopic studies on the single phase Ag2O showed the stretching vibration of Ag‐O bonds. Single‐phase Ag2O films obtained at oxygen partial pressure of 2x10‐2 Pa were nano‐crystalline with crystallite size of 20 nm and possessed an electrical resistivity of 5.2x10‐3 Ωcm and optical band gap of 2.05 eV. The films deposited at higher oxygen partial pressure of 9x10‐2 Pa were of AgO with electrical resistivity of 1.8x10‐2 Ωcm and optical band gap of 2.13 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Zinc oxide due to specific electrical, optical and acoustic properties is the important semiconductor material, which has many various applications. There is growing interest in ZnO due to its potential applicability for optoelectronic devices such as light‐emitting diodes, laser diodes and detectors for UV wavelength range. ZnO properties are very close to those of widely recognized semiconductor GaN. The band gap of ZnO (3.37 eV) is close to that of GaN (3.39 eV) but ZnO exciton binding energy (60 meV) is twice larger than that of GaN (28 meV). Optically pumped UV lasing have been demonstrated at room temperature using high textured ZnO films. The excitonic gain close to 300 cm–1 was achieved. ZnO thin films are expected to have higher quantum efficiency in UV semiconductor laser than GaN. The physical properties of ZnO are considered. PEMOCVD technology was used to deposit piezoelectric and highly transparent electroconductive ZnO films. Their properties are discussed. The experiments on polycrystalline ZnO films deposited by RF magnetron sputtering at different partial pressure of oxygen are presented. AFM images were studied in tapping mode for deposited films. The investigated films were dielectric ones and had optical transparency within 65‐85% at thickness in the interval 0.2‐0.6 μm. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Sm‐doped CaNb2O6 (CaNb2O6:Sm) phosphor thin films were prepared by radio‐frequency magnetron sputtering on sapphire substrates. The thin films were grown at several growth temperatures and subsequently annealed at 800 °C in air. The crystallinity, surface morphology, optical transmittance, and photoluminescence of the thin films were investigated by X‐ray diffraction, scanning electron microscopy, ultraviolet‐visible spectrophotometry, and fluorescence spectrophotometry, respectively. All of the thin films showed a main red emission radiated by the transition from the 4G5/2 excited state to the 6H9/2 ground state of the Sm3+ ions and several weak bands under ultraviolet excitation with a 279 nm wavelength. The optimum growth temperature for depositing the high‐quality CaNb2O6:Sm thin films, which was determined from the luminescence intensity, was found to be 400 °C, where the thin film exhibited an orthorhombic structure with a thickness of 370 nm, an average grain size of 220 nm, a band gap energy of 3.99 eV, and an average optical transmittance of 85.9%. These results indicate that the growth temperature plays an important role in controlling the emission intensity and optical band gap energy of CaNb2O6:Sm thin films.  相似文献   

12.
This paper deals with the preparation of Zirconium Nitride films by DC reactive magnetron sputtering. Films were deposited on silicon substrates at room temperature. Nitrogen partial pressure was varied from 4 × 10−5 to 10 × 10−5 m bar and the effect on the structural, electrical, optical properties of the films was systematically studied. The films formed at a nitrogen pressure of 6 × 10−5 mbar showed low electrical resistivity of 1.726 × 10−3 Ω.cm. The deposited films were found to be crystalline with refractive index and extinction coefficient 1.95 and 0.4352 respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Aluminum‐doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Also effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were explained using the X‐ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Zirconium thin films grown on Si substrates by a planar magnetron sputtering system were thermally oxidized at oxygen ambient within 523‐823 K resulting in zirconium oxide films with various stoichiometries. XRD analysis of the ex situ oxidized films revealed the phases at different oxidation temperatures. To achieve a reasonable fit between the experimental and SIMNRA simulated RBS spectra of the prepared samples; it was required to introduce a SiO2buffer layer in the simulated target between Si substrate and ZrO2 film. The presence of this intermediate SiO2 layer was confirmed by observation of SiO2 phase in the XRD patterns of all the thermally oxidized samples. Using RBS analysis data, the effect of oxidation temperature on the stoichiometry of zirconium oxide films and thickness of ZrOxand SiO2 films were investigated. XRD patterns of thermally oxidized Zr films also revealed that crystallization of zirconium oxide films was initiated at about 673 K and was almost completed at 823 K. Diffusion of oxygen atoms through surface layer was investigated and the effective activation energy for oxygen mass transport was estimated to be 1.75 eV using RBS data and Arrhenius relation. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Zirconium oxide thin films have been deposited on Si (100) substrates at room temperature at an optimized oxygen partial pressure of 3x10‐2 mbar by reactive pulsed laser deposition. High temperature x‐ray diffraction (HTXRD) studies of the film in the temperature range room temperature‐1473 K revealed that the film contained only monoclinic phase at temperatures ≤ 673 K and both monoclinic and tetragonal phases were present at temperatures ≥ 773 K. The tetragonal phase content was significantly dominating over monoclinic phase with the increase of temperature. The phase evolution was accompanied with the increase in the crystallite size from 20 to 40 nm for the tetragonal phase. The mean thermal expansion coefficients for the tetragonal phase have been found to be 10.58x10‐6 K‐1 and 20.92x10‐6K‐1 along a and c‐axes, respectively. The mean volume thermal expansion coefficient is 42.34x10‐6 K‐1 in the temperature range 773‐1473 K. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Highly (1 1 0)- and (1 0 0)-oriented LaNiO3 (LNO) thin films were successfully grown on Si (1 0 0) substrate using radio frequency (RF) magnetron sputtering at room temperature (RT). Effects of oxygen partial pressures on the orientation, film composition, surface morphology, and electrical properties of the films were investigated. The nearly complete (1 0 0) orientation was first achieved with oxygen partial pressure beyond 15% in the sputtering gas. The preferred (1 0 0) orientation of growing films is determined by uniform distribution of Ni3+ and La/Ni ratio in the films caused by oxygen during sputtering, as well as the lowest surface energy of the films in the crystalline process. LNO films with controlled orientation have low resistivity of 7.0×10−6 Ω m which is a good basis for integrating ferroelectric capacitors.  相似文献   

17.
Vanadium (V) doped ZnO thin films (Zn1‐xVx O, where x = 0, 0.05, 0.10) have been grown on sapphire substrates by RF magnetron sputtering to realize room temperature ferromagnetism (RTFM). The grown films have been subjected to X‐ray diffraction (XRD), resonant Raman scattering, photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements to investigate their structural, optical and magnetic properties, respectively. The full width at half maximum of XRD and Raman scattering peaks increases with V ion concentration indicates that the V ions have been substituted on Zn2+ ions in the ZnO matrix. The increase in oxygen vacancies with V concentration is evidenced by PL measurements. Rutherford backscattering spectrometry analysis confirms the presence of the V ions in the films. The room temperature VSM measurements reveal the signature of ferromagnetism in V doped ZnO thin films. It has been observed that the grain boundary defects, i.e., oxygen vacancies play a crucial role in inducing RTFM in V doped ZnO films. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
本文采用直流磁控溅射分层溅射制备了氧化铟锡(ITO)/银(Ag)/ITO多层复合薄膜。系统研究了溅射温度对ITO/Ag/ITO多层复合薄膜的结构和光电性能影响。采用ITO(m(In2O3)∶m(SnO2)=9∶1;直径60 mm)靶材和Ag(纯度99.999%;直径60 mm)靶材分层溅射,使ITO薄膜和Ag薄膜依次沉积在钠-钙玻璃基片上。结果表明,溅射温度对该薄膜的形貌和结构具有显著的影响。在中间Ag薄膜和顶层ITO薄膜的溅射温度均为120 ℃时,薄膜表面晶粒形貌由类球形转变为菱形,此时薄膜方阻为3.68 Ω/Sq,在488 nm处透射率为88.98%,且品质因数为0.03 Ω-1,实现了低方阻高可见光透射率ITO/Ag/ITO多层复合薄膜的制备。  相似文献   

19.
衬底温度是磁控溅射法制备氧化锌薄膜中一个非常重要的工艺指标,探索衬底温度对氧化锌薄膜微结构及光学性能的影响对制备环保型高质量氧化锌紫外屏蔽材料具有重要意义。以质量分数99.99%的氧化锌陶瓷靶为溅射源,利用射频磁控溅射技术在石英衬底上沉积了氧化锌紫外屏蔽薄膜,通过X射线衍射仪、薄膜测厚仪、紫外-可见分光光度计、荧光分光光度计进行测试和表征,研究了不同衬底温度对ZnO薄膜微结构及光学性能的影响。实验结果表明:制备所得薄膜均为六角纤锌矿结构,具有沿(002)晶面择优取向生长的特点,其晶格常数、晶粒尺寸、透过率、光学能隙、可见荧光、结晶质量等都与衬底温度密切相关,当衬底温度为250 ℃,溅射功率160 W,氩气压强0.5 Pa,氩气流速8.3 mL/min,沉积时间60 min时,所得氧化锌薄膜样品取向性最好,晶粒尺寸最大,薄膜结构致密,具有良好的光学性能和结晶质量。  相似文献   

20.
沉积压强对Sc掺杂ZnO薄膜性能的影响   总被引:2,自引:1,他引:1  
利用射频磁控溅射方法,采用Sc_2O_3掺杂(质量百分比2;)ZnO为靶材在石英玻璃上制备透明导电ZnO:Sc(SZO)薄膜.用X射线衍射仪、分光光度计及霍尔测试仪等对样品进行表征,分析了沉积压强从0.3 Pa到2.0 Pa的变化对SZO薄膜的微结构及光学特性的影响.XRD研究结果表明所有样品都是六角密堆积结构,而且溅射压强对SZO薄膜的微结构有着显著的影响.所有SZO薄膜的透过率在可见光区域均大于85;,近紫外区域由于吸收,透射率大大降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号