首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low dislocation density of 107–8 cm−2 in GaN thin films on 6H-SiC(0001) substrates grown by metalorganic chemical vapor deposition was achieved. By considering possible origins of dislocations in the GaN/AlN/Sic structure, two major dislocation reduction routes are proposed; ultra-thin AlN buffer layers and smooth AlN surfaces in an atomic scale. Experimentally, the effects of the surface roughness and structural perfection of the AlN buffer layer on GaN film quality were extensively investigated as a function of AlN film thickness. The reduced dislocation density was realized by using ultra-thin AlN buffer layers having a thickness of 1.5 nm, which is below the critical value for misfit dislocation generation. The smoother surface morphology and enhanced structural quality of ultra-thin AlN buffer layers were found to be the main parameters in reducing the defect density in the GaN film.  相似文献   

2.
A high-quality AlN/GaN distributed Bragg-reflectors (DBR) was successfully grown on sapphire substrate by low-pressure metal-organic chemical vapor deposition using ultra-thin AlN/GaN superlattice insertion layers (SLILs). The reflectivity of AlN/GaN DBR with ultra-thin AlN/GaN SLIL was measured and achieved blue peak reflectivity of 99.4% at 462 nm. The effect of ultra-thin AlN/GaN superlattice insertion layer was examined in detail by transmission electron microscopy, and indicated that the crack of AlN/GaN DBR can be suppress by inserting AlN/GaN SLIL. For electronic properties, the turn on voltage is about 4.1 V and CW laser action of vertical-cavity surface-emitting laser (VCSEL) was achieved at a threshold injection current of 1.4 mA at 77 K, with an emission wavelength of 462 nm.  相似文献   

3.
The effect of the N/Al ratio of AlN buffers on the optical and crystal quality of GaN films, grown by metalorganic chemical vapor deposition on Si(1 1 1) substrates, has been investigated. By optimizing the N/Al ratio during the AlN buffer, the threading dislocation density and the tensile stress have been decreased. High-resolution X-ray diffraction exhibited a (0 0 0 2) full-width at half-maximum as low as 396 acrsec. The variations of the tensile stress existing in the GaN films were approved by the redshifts of the donor bound exiton peaks in the low-temperature photoluminescence measurement at 77 K.  相似文献   

4.
The strain accommodation mechanisms at AlN interlayers in GaN, grown by radio‐frequency plasma assisted molecular beam epitaxy, are studied using transmission electron microscopy techniques and atomistic modelling. Interlayers of various thicknesses grown within GaN epilayers deposited on both sapphire and silicon substrates have been employed. Interlayers of thickness below 6 nm do not exhibit line defects although local roughness of the upper interlayer interface is observed as a result of the Al adatom kinetics and higher interfacial energy compared to the lower interface. Above 6 nm, introduction of a ‐type misfit and threading dislocations constitutes the principal relaxation mechanism. Due to strain partitioning between AlN and GaN, threading dislocations adopt inclined zig‐zag lines thus contributing to the relief of alternating compressive‐tensile elastic strain across the AlN/GaN heterostructure. The observed dislocation configurations are consistent with a model of independent motion by climb or ancillary glide in response to their localized three‐dimensional strain environment. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
High-quality superlattice structures of GaN/AlGaN were grown on (0 0 0 1) sapphire substrates by molecular beam epitaxy. The threading dislocation density was reduced by growing low-temperature AlN layers in between the high-temperature GaN. In addition, in situ monitoring of the growth rate was achieved using pyrometric interferometry. Cross-sectional transmission electron microscopy of the superlattice structures revealed abrupt interfaces between GaN/AlGaN and excellent layer uniformity. We observed intersubband absorption at wavelengths as short as 1.52 μm in the GaN/AlGaN material system. A range of intersubband absorption peaks was observed between 1.52 and 4.2 μm by varying the well thickness and barrier Al content. In addition, the distribution of the built-in electric field between the well and barrier layers was also found to affect the intersubband transition wavelength.  相似文献   

6.
Thick GaN layers deposited in HVPE system on composite substrates made on sapphire substrates in Metalorganic Vapour Phase Epitaxy (MOVPE) system have been investigated. The following substrates were used: (00.1) sapphire substrates with AlN, AlN/GaN and GaN thin layers. The crystallographic structure and the quality of the epitaxial thick GaN layers were determined. Comparison of the three types of thick layers was performed. Significant differences were observed. It was found that thick GaN deposited on the simplest MOVPE‐GaN/sapphire composite substrate has comparable structure's properties as the other, more complicated. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Structural properties of GaN epilayers on wet-etched protruding and recess-patterned sapphire substrates (PSSs) have been investigated in detail using high-resolution double-crystal X-ray diffraction (DCXRD) and etch-pit density methods. The DCXRD results reveal various dislocation configurations on both types of PSSs. The etch pits of GaN on the recess PSS exhibit a regular distribution, i.e. less etch pits or threading dislocation density (TDD) onto the recess area than those onto the sapphire mesas. On the contrary, an irregular distribution is observed for the etch pits of GaN on the protruding PSS. A higher crystal quality of the GaN epilayer grown onto the recess PSS can be achieved as compared with that onto the protruding PSS. These data reflect that the GaN epilayer on the recess PSS could be a better template for the second epitaxial lateral overgrowth (ELOG) of GaN. As a result, the GaN epilayers after the ELOG process display the TDDs of around ∼106 cm−2.  相似文献   

8.
AlGaN growth using epitaxial lateral overgrowth (ELO) by metalorganic chemical vapor deposition on striped Ti, evaporated GaN on sapphire, has been investigated. AlGaN/AlN films growth on GaN/AlGaN superlattices (SLs) structure on the Ti masks, with various SLs growth temperature (1030, 1060 and 1090 °C) were grown. With increasing the growth temperature, AlGaN surface became flat. The AlGaN film had a cathodoluminescence peak around 345 nm. However, in secondary ion mass spectrometry (SIMS) measurement, Ti signal was detected on the top of AlGaN surface when GaN/AlGaN SLs was grown on Ti striped masks. By inserting the AlN blocking layer on SLs, Ti diffusion was stopped at the AlN layer, and the AlGaN crystalline quality was improved.  相似文献   

9.
《Journal of Crystal Growth》2006,286(2):235-239
The characteristics of Si-doped and undoped GaN/Si(1 1 1) heteroepitaxy with composite buffer layer (CBL) and superlattice are compared and discussed. While as-grown Si-doped GaN/Si(1 1 1) heteroepitaxy shows lower quality compared to undoped GaN, crack-free n-type and undoped GaN with the thickness of 1200 nm were obtained by metalorganic chemical vapor deposition (MOCVD). In order to achieve the crack-free GaN on Si(1 1 1), we have introduced the scheme of multiple buffer layers; composite buffer layer of Al0.2Ga0.8N/AlN and superlattice of Al0.2Ga0.8N/GaN on 2-in. Si(1 1 1) substrate, simultaneously. The FWHM values of the double-crystal X-ray diffractometry (DCXRD) rocking curves were 823 arcsec and 745 arcsec for n-GaN and undoped GaN/Si(1 1 1) heteroepitaxy, respectively. The average dislocation density on GaN surface was measured as 3.85×109 and 1.32×109 cm−2 for n-GaN and undoped GaN epitaxy by 2-D images of atomic force microscopy (AFM). Point analysis of photoluminescence (PL) spectra was performed for evaluating the optical properties of the GaN epitaxy. We also implemented PL mapping, which showed the distribution of edge emission peaks onto the 2 inch whole Si(1 1 1) wafers. The average FWHMs of the band edge emission peak was 367.1 and 367.0 nm related with 3.377 and 3.378 eV, respectively, using 325 nm He-Cd laser as an excitation source under room temperature.  相似文献   

10.
The influence of Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition (MOCVD) has been systematically studied. Compared with the sample without Al pre-deposition, optimum Al pre-deposition time could improve the AlN buffer layer crystal quality and reduce the root mean square (RMS) roughness. Whereas, overlong Al-deposition time deteriorated the AlN crystal quality and Al-deposition patterns could be found. Cracks and melt-back etching patterns appeared in the GaN layer grown without Al pre-deposition. With suitable Al-deposition time, crack-free 2.0 μm GaN was obtained and the full-width at half-maximum (FWHM) of (0 0 2) plane measured by double crystal X-ray diffraction (DCXRD) was as low as 482 arcsec. However, overlong Al-deposition time would result in a great deal of cracks, and the crystal quality of GaN layer deteriorated. The surface of GaN layer became rough in the region where the Al-deposition patterns were formed due to overlong Al-deposition time.  相似文献   

11.
High quality GaN layer was obtained by insertion of high temperature grown AlN multiple intermediate layers with migration enhanced epitaxy method by the RF-plasma assisted molecular beam epitaxy on (0 0 01) sapphire substrates. The propagating behaviors of dislocations were studied, using a transmission electron microscope. The results show that the edge dislocations were filtered at the AlN/GaN interfaces. The bending propagation of threading dislocations in GaN above AlN interlayers was confirmed. Thereby, further reduction of dislocations was achieved. Dislocation density being reduced, the drastic increase of electron mobility to 668 cm2/V s was obtained at the carrier density of 9.5×1016 cm−3 in Si doped GaN layer.  相似文献   

12.
Non-polar (1 1 2¯ 0) a-plane GaN films have been grown by low-pressure metal-organic vapor deposition on r-plane (1 1¯ 0 2) sapphire substrate. We report on an approach of using AlN/AlGaN superlattices (SLs) for crystal quality improvement of a-plane GaN on r-plane sapphire. Using X-ray diffraction and atomic force microscopy measurements, we show that the insertion of AlN/AlGaN SLs improves crystal quality, reduces surface roughness effectively and eliminates triangular pits on the surface completely.  相似文献   

13.
The dependency of LPE growth rate and dislocation density on supersaturation in the growth of GaN single crystals in the Na flux was investigated. When the growth rate was low during the growth of GaN at a small value of supersaturation, the dislocation density was much lower compared with that of a substrate grown by the Metal Organic Chemical Vapor Deposition method (MOCVD). In contrast, when the growth rate of GaN was high at a large value of supersaturation, the crystal was hopper including a large number of dislocations. The relationship between the growth conditions and the crystal color in GaN single crystals grown in Na flux was also investigated. When at 800 °C the nitrogen concentration in Na–Ga melt was low, the grown crystals were always tinted black. When the nitrogen concentration at 850 °C was high, transparent crystals could be grown.  相似文献   

14.
本文研究了在石墨烯上生长GaN薄膜时晶体取向的变化。采用AlN成核层辅助生长,GaN由取向相差较大的小晶粒,逐渐合并为与石墨烯取向一致的晶粒,最终形成了约4.6μm厚的GaN薄膜。通过EBSD和XRD证实了GaN晶体取向一致性的提高,拉曼光谱也表明GaN晶体的高质量。  相似文献   

15.
GaN nano‐ceramics were analyzed using transmission electron microscopy (TEM), showing that these ceramics are characterized by highly disoriented grains of the linear size of 100–150 nm. These GaN ceramics were used as substrates for GaN epitaxy in standard MOVPE conditions. For the comparison, MOVPE GaN layers on silicon substrates were grown using similar conditions. It is shown that MOVPE growth of GaN layers is highly anisotropic for both cases. However, the disorientation of the highly mismatched GaN layer on silicon is different from that characterizing GaN layer deposited on the ceramic substrate. In the latter case the disorientation is much higher, and three dimensional in nature, causing creation of polycrystalline structure having large number of the dislocations. In the case of the GaN layer grown on the silicon substrate the principal disorientation is due to rotation around c‐axis, causing creation of mosaic structure of edge dislocations. Additionally, it is shown that the typical grain size in AlN nucleation layer on Si is smaller, of order of 20 nm. These two factors contribute to pronounced differences in later stage of the growth of GaN layer on the ceramic. Due to high growth anisotropy an appropriately thick GaN layer can, eventually, develop flat surfaces suitable for construction of optoelectronic and electronic structures. As shown by the TEM data, this can be achieved only at the cost of creation of the relatively large density of dislocations and stacking faults. The latter defects were not observed for the GaN growth on Si substrates. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Resistivity and Hall effect measurements were carried out as a function of magnetic field (0‐1.5 T) and temperature (30‐300 K) for Al0.88In0.12N/AlN/GaN/AlN heterostructures grown by Metal Organic Chemical Vapor Deposition (MOCVD). Magnetic field dependent Hall data were analyzed by using the quantitative mobility spectrum analysis (QMSA). A two‐dimensional electron gas (2DEG) channel located at the Al0.88In0.12N/GaN interface with an AlN interlayer and a two‐dimensional hole gas (2DHG) channel located at the GaN/AlN interface were determined for Al0.88In0.12N/AlN/GaN/AlN heterostructures. The interface parameters, such as quantum well width, the deformation potential constant and correlation length as well as the dominant scattering mechanisms for the Al0.88In0.12N/GaN interface with an AlN interlayer were determined from scattering analyses based on the exact 2DEG carrier density and mobility obtained with QMSA. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We describe the growth of GaN on Si(1 1 1) substrates with AlxGa1−xN/AlN buffer layer by ammonia gas source molecular beam epitaxy (NH3-GSMBE). The influence of the AlN and AlxGa1−xN buffer layer thickness and the Al composition on the crack density of GaN has been investigated. It is found that the optimum thickness is 120 and 250 nm for AlN and AlxGa1−xN layers, respectively. The optimum Al composition is between 0.3<x<0.6.  相似文献   

18.
The characteristics of confined epitaxial growth are investigated with the goal of determining the contributing effects of mask attributes (spacing, feature size) and growth conditions (V/III ratio, pressure, temperature) on the efficiency of the approach for dislocation density reduction of GaN. In addition to standard (secondary electron and atomic force) microscopy, electron channeling contrast imaging (ECCI) is employed to identify extended defects over large (tens of microns) areas. Using this method, it is illustrated that by confining the epitaxial growth, high quality GaN can be grown with dislocation densities approaching zero.  相似文献   

19.
We fabricated one-dimensional GaN nanorods on AlN/Si (1 1 1) substrates at various temperatures, and carrier gas flow amount, using the hydride vapor phase epitaxy (HVPE) method. An AlN buffer layer of 50 nm thickness was deposited by RF sputtering for 25 min. Stalagmite-like GaN nanorods formed at a growth temperature of 650 °C. The diameters and lengths of GaN nanorods increase with growth time, whereas the density of nanorods decreases. And we performed the experiments by changing the carrier gas flow amount at a growth temperature of 650 °C and HCl:NH3 flow ratio of 1:40. GaN nanorods, with an average diameter of 50 nm, were obtained at a carrier gas flow amount of 1340 sccm. The shape, structures, and optical characteristics of the nanorods were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence.  相似文献   

20.
AlGaN/GaN heterostructures were deposited on Si utilizing in‐situ SiN masking layer as a mean to decrease stress present in the final heterostructures. Structures were grown under different V/III ratio using metalorganic vapour phase epitaxy (MOVPE). Additional approach was applied to obtain crack‐free heterostructures which was deposition of 15 nm low temperature AlN interlayer. Each of the heterostructure contained GaN layer of 2.4 μm total thickness. In‐situ SiN masking layer were obtained via introduction of SiH4 precursor into reactor under high temperature growth conditions for 100 s. In that manner, few monolayers of SixNx masking layer were deposited, which due to the partial coverage of AlN, played role of a mask leading to initial 3D growth mode enhancing longer coalescence of GaN buffer layer. To study surface morphology AFM images were observed. Three methods were used in order to obtain basal plane stress present in multilayer structures ‐ MicroRaman spectroscopy, XRD studies and optical profilometry. It was found that varying V/III precursors ratio during GaN layer growth characteristic for structures with the SiN mask approach formation of triangular micropits can be minimized. Outcomes for three different methods turned out to be coherent. It was found that certain amount of micropits on the surface can be advantageous lowering stress introduced during cooling after process to the AlGaN/GaN/SiN/AlN/Si(111) structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号