首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several titanium isopropoxides have facilitated the ring opening polymerization of l-lactide (LA) and rac-lactide in toluene solution at various polymerization temperatures via a coordination insertion mechanism. Depending on catalysts, the controlled/living poly(l-lactide), or the heterotactic-biased poly(rac-lactide) were obtained. The stereochemical microstructure of polylactide (PLA) was determined from homonuclear decoupled 1H NMR spectral studies. Such spectra of PLA derived from rac-LA featured the characteristic five-methine resonance pattern, whereas corresponding spectra derived from l-LA exhibited only one methine peak.  相似文献   

2.
The tetrameric titanium alkoxide (MeC(CH2μ3‐O)(CH2μ‐O)2)2Ti4(O‐i‐Pr)10 ( 1 ) catalyzes the ring‐opening polymerization (ROP) of lactide (LA) in toluene solution at various polymerization temperatures, and its bulk ROP at 130°C. Compound 1 facilitated reasonably controlled polymerization characteristics via a coordination/insertion mechanism in solution, whereas the bulk polymerization products displayed broad molecular‐weight distributions. The stereochemical microstructure of PLA was determined from homonuclear decoupled 1H NMR spectroscopic studies.  相似文献   

3.
Poly(β‐hydroxyalkanoate)s (PHAs) are a class of aliphatic polyesters that can be efficiently synthesized by ring‐opening polymerization (ROP) of β‐lactones. The case of chiral racemic β‐substituted β‐lactones is particularly appealing since these monomers open the way to original tacticities and materials different from those biotechnologically produced. In this overview, after briefly surveying general considerations associated to the ROP of β‐lactones and metal‐based catalysts used in stereoselective ROP of racemic β‐butyrolactone, special emphasis is given to discrete rare earth catalysts that have allowed the preparation of highly syndiotactic poly(3‐hydroxybutyrate)s. Recent developments – such as preparation of stereocontrolled PHAs with pendant structural groups via (co)polymerization of functional β‐substituted β‐lactones, and highly alternating copolymers obtained by ROP of mixtures of enantiomerically pure but different monomers – are also discussed.

  相似文献   


4.
Alternating copolymers constitute an attractive class of materials. It was shown previously that highly alternated poly(β‐hydroxyalkanoate)s (PHAs) can be prepared by ring‐opening polymerization (ROP) of mixtures of two different enantiomerically pure 4‐alkyl‐β‐propiolactones. However, the approach could not be extended to PHAs with chemically tunable functional groups, which is highly desirable to access original advanced materials. Reported herein is the first highly syndioselective and controlled ROP of racemic allyl and benzyl β‐malolactonates (MLAR; R=allyl, benzyl) using an yttrium complex supported by a tetradentate dichloro‐substituted bis(phenolate) ligand. This highly active catalyst allows the nearly perfect alternating copolymerization of MLAAllyl and MLABenzyl. Hydrogenolysis of the benzyloxycarbonyl or functionalization of the allyl pendant groups opens a route towards a new class of functional alternating copolymers.  相似文献   

5.
Summary: Advances in design of latent ruthenium phenylindenylidene catalysts bearing salicylaldimine ligands for ring-opening metathesis polymerization are described. The presence of the substituents in ortho position in N-aryl ring of salicylaldimine ligand has been found to be the main factor determining the catalyst stability. The best of the studied catalysts after acid activation offers activity comparable to that of the dichloride systems in ring-opening metathesis polymerization of DCPD, while maintaining very high stability in the monomer solution.  相似文献   

6.
Ring‐opening metathesis polymerization (ROMP) of norbornene catalyzed by niobium(V) N,N‐dialkylcarbamates Nb(O2CNR2)5, R = Et ( 1 ), Me ( 2 ) was studied in the presence of methylaluminoxane (MAO) as a cocatalyst. These novel catalytic systems resulted very active in chlorobenzene: 1 in the presence of methylaluminoxane catalyzes the ROMP of norbornene with the highest activity (29 000 kg of polymer/mol of catalyst × hour) never reported up to now for niobium catalysts. The high productivity appears particularly attractive considering that these precursors are rather cheap and easy to synthesize and to handle. Polynorbornenes were characterized by FT‐IR and NMR spectroscopies and by DSC calorimetry. A new FT‐IR method for the swift determination of the cis/trans content of the polymer is presented.

  相似文献   


7.
8.
Diiminopyrrolide copper alkoxide complexes, LCuOR (OR1=N,N‐dimethylamino ethoxide, OR2=2‐pyridyl methoxide), are active for the polymerization of rac‐lactide at ambient temperature in benzene to yield polymers with Mw/Mn=1.0–1.2. X‐ray diffraction studies showed bridged dinuclear complexes in the solid state for both complexes. While LCuOR1 provided only atactic polylactide, LCuOR2 produced partially isotactic polylactide (Pm=0.7). The difference in stereocontrol is attributed to a dinuclear active species for LCuOR2 in contrast to a mononuclear species for LCuOR1.  相似文献   

9.
Basic organocatalysts of the guanidine (1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene, TBD), amidine (1,8‐diazabicyclo[5.4.0]‐undec‐7‐ene, DBU), and phosphazene (2‐tert‐butylimino‐2‐diethylamino‐1,3‐dimethylperhydro‐1,3,2diazaphosphorine, BEMP) type do effectively polymerize β‐butyrolactone (BL). Poly(3‐hydroxybutyrate)s (PHBs) with controlled molecular features, that is, controlled molar masses, narrow molar mass distributions, and well‐defined functional end groups are thus formed at 60 °C from bulk monomer, with up to 21 500 g mol−1. The formation of α,ω‐guanidine/amidine/phosphazene,crotonate functionalized PHBs, as demonstrated by NMR, SEC, and MALDI–ToF mass spectrometry analyses, mechanistically suggests the formation of N‐acyl‐α,β‐unsaturated propagating species that originate from 1:1 guanidine/amidine/phosphazene:BL adducts.  相似文献   

10.
Alkyl aluminum complexes of chiral salan ligands assembled around the 2,2′‐bipyrrolidine core form as single diastereomers that have identical configurations of the N donors. Active catalysts for the polymerization of lactide were formed upon the addition of benzyl alcohol. Polymeryl exchange between enantiomorphous aluminum species had a dramatic effect on the tacticity of the poly(lactic acid) (PLA) in the polymerization of racemic lactide (rac‐LA): The enantiomerically pure catalyst of the nonsubstituted salan ligand led to isotactic PLA, and the racemic catalyst exhibited lower stereocontrol. The enantiomerically pure catalyst of the chloro‐substituted salan ligand led to PLA with a slight tendency toward heterotacticity, whereas the racemic catalyst led to PLA of almost perfect heterotacticity following an insertion/auto‐inhibition/exchange mechanism.  相似文献   

11.
12.
13.
Several new heteroleptic SnII complexes supported by amino‐ether phenolate ligands [Sn{LOn}(Nu)] (LO1=2‐[(1,4,7,10‐tetraoxa‐13‐azacyclopentadecan‐13‐yl)methyl]‐4,6‐di‐tert‐butylphenolate, Nu=NMe2 ( 1 ), N(SiMe3)2 ( 3 ), OSiPh3 ( 6 ); LO2=2,4‐di‐tert‐butyl‐6‐(morpholinomethyl)phenolate, Nu=N(SiMe3)2 ( 7 ), OSiPh3 ( 8 )) and the homoleptic Sn{LO1}2 ( 2 ) have been synthesized. The alkoxy derivatives [Sn{LO1}(OR)] (OR=OiPr ( 4 ), (S)‐OCH(CH3)CO2iPr ( 5 )), which were generated by alcoholysis of the parent amido precursor, were stable in solution but could not be isolated. [Sn{LO1}]+[H2N{B(C6F5)3}2]? ( 9 ), a rare well‐defined, solvent‐free tin cation, was prepared in high yield. The X‐ray crystal structures of compounds 3 , 6 , and 8 were elucidated, and compounds 3 , 6 , 8 , and 9 were further characterized by 119Sn Mössbauer spectroscopy. In the presence of iPrOH, compounds 1 – 5 , 7 , and 9 catalyzed the well‐controlled, immortal ring‐opening polymerization (iROP) of L ‐lactide (L ‐LA) with high activities (ca. 150–550 molL?LA molSn?1 h?1) for tin(II) complexes. The cationic compound 9 required a higher temperature (100 °C) than the neutral species (60 °C); monodisperse poly(L ‐LA)s were obtained in all cases. The activities of the heteroleptic pre‐catalysts 1 , 3 , and 7 were virtually independent of the nature of the ancillary ligand, and, most strikingly, the homoleptic complex 2 was equally competent as a pre‐catalyst. Polymerization of trimethylene carbonate (TMC) occurs much more slowly, and not at all in the presence of LA; therefore, the generation of PLA‐PTMC copolymers is only possible if TMC is polymerized first. Mechanistic studies based on 1H and 119Sn{1H} NMR spectroscopy showed that the addition of an excess of iPrOH to compound 3 yielded a mixture of compound 4 , compound [Sn(OiPr)2]n 10 , and free {LO1}H in a dynamic temperature‐dependent and concentration‐dependent equilibrium. Upon further addition of L ‐LA, two active species were detected, [Sn{LO1}(OPLLA)] ( 12 ) and [Sn(OPLLA)2] ( 14 ), which were also in fast equilibrium. Based on assignment of the 119Sn{1H} NMR spectrum, all of the species present in the ROP reaction were identified; starting from either the heteroleptic ( 1 , 3 , 7 ) or homoleptic ( 2 ) pre‐catalysts, both types of pre‐catalysts yielded the same active species. The catalytic inactivity of the siloxy derivative 6 confirmed that ROP catalysts of the type 1 – 5 could not operate according to an activated‐monomer mechanism. These mechanistic studies removed a number of ambiguities regarding the mechanism of the (i)ROPs of L ‐LA and TMC promoted by industrially relevant homoleptic or heteroleptic SnII species.  相似文献   

14.
A switch from carbanions to aza‐anions is performed by the addition of N‐tosylaziridine (TAz) to living poly(styryl) (PS) chains. This is the first example of carbanionic aziridine ring‐opening which was previously activated by amidation with a tosyl group to enable nucleophilic ring‐opening by the living chain end. Poly(styrene)‐tosylaziridines (PSTAz) with narrow molecular weight distributions and variable molecular weights are synthesized. The removal of the tosyl group and subsequent functionalization is shown, evidencing quantitative transfer to azaanionic species. All polymers are characterized in detail by 1H NMR spectroscopy, DOSY 1H NMR spectroscopy, and size exclusion chromatography (SEC). This strategy allows the introduction of amine groups via anionic polymerization in analogy to the well‐established epoxide termination.

  相似文献   


15.
16.
17.
The metal‐free polymerization of propylene oxide (PO) using a special class of alkene—N‐heterocyclic olefins (NHOs)—as catalysts is described. Manipulation of the chemical structure of the NHO organocatalyst allows for the preparation of the poly(propylene oxide) in high yields with high turnover (TON>2000), which renders this the most active metal‐free system for the polymerization of PO reported to date. The resulting polyether displays predictable end groups, molar mass, and a low dispersity (?M<1.09). NHOs with an unsaturated backbone are essential for polymerization to occur, while substitution at the exocyclic carbon atom has an impact on the reaction pathway and ensures the suppression of side reactions.  相似文献   

18.
Manganese‐corrole complexes in combination with a co‐catalyst [PPN]X ([PPN]+=bis(triphenylphosphoranylidene)iminium) were found to be new versatile catalysts for the polymerization of epoxides, copolymerization of epoxides with CO2, and copolymerization of epoxides with cyclic anhydrides affording a wide range of polymeric materials. This work should allow the synthesis of new types of improved innovative (co)polymers with original properties and would clearly increase the number of applications for polyesters, polycarbonates, and polyethers.  相似文献   

19.
20.
A novel chlorotitanium calix[4]arene complex was synthesized and tested, without activator, as catalyst for the polymerization of L ‐ and rac‐lactide under solvent‐free conditions. The catalyst displayed high activity, which depended on the monomer‐to‐catalyst molar ratio, and led to highly isotactic PLLA. Despite concomitant transesterification during the polymerization, polylactide formation was well‐controlled, the molar mass distribution indexes remaining in the restricted range of 1.2–1.4.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号