首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N‐acetyl‐4‐nitrotryptophan methyl ester (2), N‐acetyl‐5‐nitrotryptophan methyl ester (3), N‐acetyl‐6‐nitrotryptophan methyl ester (4) and N‐acetyl‐7‐nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF3‐methanol. Assignments of the 1H and 13C NMR chemical shifts were made using a combination of 1H–1H COSY, 1H–13C HETCOR and 1H–13C selective INEPT experiments. Copyright © 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

2.
The ceric ammonium nitrate‐catalyzed synthesis of (E)‐5‐amino‐N‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐4‐carboxamides 5 was simply achieved upon the one‐pot four‐component reaction of isoxazolyl cyanoacetamide 1 with malononitrile 2 , 2‐hydroxy acetophenone 3 , and aromatic aldehydes 4 in ethanol. Compounds 5 on heating with acetic anhydride underwent tandem N‐acetylation and cyclocondensation involving intramolecular cyclization to afford the title compounds (E)‐11‐methyl‐12‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐13(12H)‐ones 6 in good yields. The chemical structures have been confirmed by analytical and spectral analyses.  相似文献   

3.
Some new (S)‐1‐aryl‐N‐(1‐hydroxy‐3‐phenylpropan‐2‐yl)‐5‐methyl‐1 H‐1,2,3‐triazole‐4‐carboxamides 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j have been synthesized and established by 1H and 13C NMR, IR, MS spectra, CHN analyses, and x‐ray diffraction crystallography. The molecular conformation and packing is stabilized by interactions of intermolecular H‐bond O2’‐H2'···O1, O2‐H2···O1’ and intramolecular H‐bond N4’‐H4'N···N3’, N4’‐H4'N···O2’, N4‐H4N···N3, N4‐H4N···O2. The two rings of five numbers were formed by H‐bond in a molecular.  相似文献   

4.
Readily accessible acylamino(chloro)acetophenones, if treated with sodium rhodanide and α‐halogenocarbonyl compounds, provide 4‐acylamino‐5‐aryl‐2‐mercapto‐1,3‐oxazole derivatives which undergo recyclization on heating in polyphosphoric acid to give substituted 1,3‐thiazol‐2(3H)‐ones or 1,3‐thiazolidin‐2,4‐diones containing 2‐alkyl(aryl)‐5‐aryl‐1,3‐oxazol‐4‐yl residues at the N3 atom. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:432–437, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20317  相似文献   

5.
The complete assignment of the 1H and 13C NMR spectra of various 2‐acetamido‐3‐mercapto‐3‐methyl‐N‐aryl‐butanamides and 2‐acetamide‐3‐methyl‐3‐nitrososulfanyl‐N‐aryl‐butanamides with p‐methoxy, o‐chloro and m‐chloro substituents is reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Synthetic routes for the preparation of methyl 2‐amino‐4‐methoxythieno[2,3‐d]pyrimidine‐6‐carboxylate (4) ‐ useful intermediate for lipophilic and classical antifolates from 2‐amino‐4,6‐dichloropyrimidine‐5‐car‐baldehyde (1) have been studied. It has been shown that more efficient synthesis of compound 4 includes the preparation of 4‐methoxy derivative 7 and subsequent tandem substitution/annulation reaction with methyl mercaptoethanoate in dimethylformamide in the presence of potassium carbonate and molecular sieves 4 Å. Compound 4 was used for the synthesis of N‐aryl 2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]‐pyrimidine‐6‐carboxamides 10a‐c, including an analog of folic acid with amide bridge ‐ N‐(4‐{[(2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]pyrirnidin‐6‐yl)carbonyl]amino}‐benzoyl)‐L‐glutamic acid (10c) .  相似文献   

7.
The synthesis of a new series of 5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐carboxamides 4a‐i and N1,N2‐Bis(5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐benzoyl)ethylenediamine ( 5 ) is reported starting from 2‐chloro‐3‐nitropyri‐dine. Fundamental steps of the synthetic pathway are i) preparation of 2‐(3‐nitro‐pyridin‐2‐ylamino)benzoic acid ( 1 ) via copper‐catalyzed condensation of 2‐chloro‐3‐nitropyridine with o‐anthranilic acid, ii) intramolecular cyclization of the acid 1 to 5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐carboxylic acid ( 2b ) upon treatment with concentrated sulfuric acid and oleum and iii) conversion of the acid 2 to the desired amides 4a‐i and 5 . Compounds 4a‐i and 5 are oxygenated azaanalogs of phenazines, a wellknown series of intercalators with cytotoxic activity.  相似文献   

8.
The 1H and 13C nmr spectra of the rotational isomers 3a and 3b of 6‐N‐methyl‐N‐formylaminomefhyl)‐thioquinanthrene were completely assigned with a combination of 1D and 2D nmr techniques. The key‐parts of this methodology were long‐range proton‐carbon correlations and NOE experiments with N‐methyl‐N‐formylaminomethyl substituent. The X‐ray study of 4‐methyl‐2‐N‐methyl‐N‐formylaminomethyl)quinoline 4a as well as 1H and 13C nmr spectra show that N‐methyl‐N‐formylaminomethyl substituent in 4a and 4b has a different steric arrangement than the same substituent in 3a and 3b .  相似文献   

9.
A series of 8‐hydroxy‐1,6‐naphthyridin‐5(6H)‐one‐7‐carboxamides 1 and the isomeric 5‐hydroxy‐1,7‐naphthyridin‐8(7H)‐one‐6‐carboxamides 2 were synthesized. N‐Lactam unsubstituted compounds 1a‐c and 2a,b were obtained by alkoxide‐induced rearrangement of the corresponding quinolinimidoacetamides 3 . Compounds 1e,f and 2e,f were synthesized by heterocyclization of the corresponding quinolinamic esters 6 and 7 . Spectroscopic properties (uv, ir, 1H and 13C nmr and ms) were analyzed and the proposed structures confirmed.  相似文献   

10.
The 1H and 13C NMR resonances of 22 5‐(5‐substituted‐2‐nitrophenyl)‐1H‐pyrrole‐2‐carboxamides, 22 5‐(5‐substituted‐2‐aminophenyl)‐1H‐pyrrole‐2‐carboxamides, and 9 5‐phenyl‐1H‐pyrrole‐2‐carboxamides were assigned completely using the concerted application of one‐ and two‐dimensional experiments (DEPT, gs‐HMQC and gs‐HMBC). NOE studies and conformational analysis confirm the preferred conformations of such compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
N‐Substituted N′‐[6‐methyl‐2‐oxido‐1,3,2‐dioxaphosphinino(5,4,‐b)pyridine‐2‐yl]ureas have been accomplished by condensation of equimolar quantities of chlorides of various carbamidophosphoric acids ( 3 ) with 3‐hydroxyl‐6‐methyl‐2‐pyridinemethanol (lutidine diol) ( 4 ) in the presence of triethylamine in dry toluene–tetrahydrofuran (1:1) mixture at 45–50°C. Their structures were established by elemental analyses, IR, 1H NMR, 13C NMR, and 31P NMR spectral data. Their antifungal and antibacterial activity is also evaluated. Most of these compounds exhibited moderate antimicrobial activity in the assays. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:509–512, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10181  相似文献   

12.
The bifunctional 3/4‐[acetyl]phenylsydnones 1a, 1b were subjected to a one‐pot ring conversion to 3‐[3/4‐acetyl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 2a, 2b , which on further bromination yielded the 3‐[3/4‐bromoacyl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 3a, 3b . Reaction of these compounds with thiourea yielded the 3‐[3/4‐(2‐aminothiazol‐4‐yl)]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 4a, 4b . The other thiazole derivatives 5a, 5b–7a, 7b were prepared by using thiosemicarbazide, thioacetamide, and thiobenzamide, respectively. In another reaction of the bromoacetyl compounds ( 3a, 3b ) with 2‐aminopyridine and 2‐aminothiazole, the fused biheterocyclic compounds 3‐[3/4‐imidazo‐[1,2‐a]pyridine‐2‐yl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 8a, 8b and 3‐[3/4‐imidazo‐[2,1‐b]‐thiazol‐6‐yl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 9a, 9b were obtained. The 3‐[3/4‐(benzofuran‐2‐carbonyl)]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 10a, 10b were obtained by treatment of compounds 3a, 3b with o‐hydroxy benzaldehyde. Most of these compounds exhibited antifungal activity greater than the reference drugs used. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:50–54, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20255  相似文献   

13.
The preparation of several novel 3,5‐substituted‐indole‐2‐carboxamides is described. A 5‐nitro‐indole‐2‐carboxylate was elaborated to the 3‐benzhydryl ester, N‐substituted ester, and carboxylic acid intermedi ates, followed by conversion to the amide and then reduction of the 5‐nitro group to the amine. Indole‐2‐carboxamides with 3‐benzyl and 3‐phenyl substituents were prepared in four steps from either a 3‐bromo indole ester using the Suzuki reaction or from a 3‐keto substituted indole ester. N‐Alkylation of ethyl indole‐2‐carboxylate, followed by amidation and catalytic addition of 9‐hydroxyxanthene gave a 3‐xanthyl‐indole‐2‐carboxamide analog and a spiropyrrolo indole as a side product.  相似文献   

14.
3,3′‐[2,2′‐Oxy‐bis‐(4S‐methyl, 5R‐phenyl‐1,3,2‐oxazaborolidine)]ethylene ( 4a ) and 3,3′‐[2, 2′‐oxy‐(4S‐methyl‐5R‐phenyl‐1,3,2‐oxazaborolidine)‐ (1,3,2‐benzoxazaborolidine)]ethylene ( 4b ) were synthesized by the reaction of N,N′‐bis‐[(1R,2S)‐norephedrine]oxalyl ( 3a ) or N,N′‐[((1R,2S)‐norephedrine, o‐hydroxyphenylamine]oxalyl ( 3b ) with BH3‐THF. The molecular structure of these compounds was established by NMR and infrared spectroscopy. The molecular geometry for 4 was studied by means of theoretical methods, resulting in structures that were in total agreement with those obtained by spectroscopy data and X‐ray diffraction. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:513–519, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20151  相似文献   

15.
Palladium(II) Complexes of 1,1,3,3,5,5‐Hexakis(dimethylamino)‐λ5‐[1,3,5]triphosphinine 1,1,3,3,5,5‐Hexakis(dimethylamino)‐1λ5‐3λ5‐5λ5‐[1,3,5]triphosphinine ( 5 ) reacts with (benzonitrile)2PdCl2 to give the chelate complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2,C4)palladium ( 6 ). In a pyridine‐d5 solution of 6 the complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2)((2H5)pyridine‐N)palladium ( 7 ) is formed. The solute 7 could not be isolated as a solid, because elimination of the solvent regenerates 6 quantitatively. Properties, nmr and ir spectra of 6 and 7 are reported. 6 is characterized by the results of an X‐ray structural analysis.  相似文献   

16.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

17.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

18.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

19.
A series of novel isoxazole, dihydropyrazolone, and tetrahydropyridine derivatives were synthesized by the reaction of corresponding ethyl 1‐substituted aryl‐2‐methyl‐4‐oxo‐1,4,5,6‐tetrahydropyridine‐3‐carboxylates with different hydrazines and hydroxylamine. Reaction of tetrahydropyridone with N ,N‐dimethylformamide dimethyl acetal provided 1‐(5‐chloro‐2‐methylphenyl)‐2‐[2‐(dimethylamino)ethenyl]‐4‐oxo‐1,4,5,6‐tetrahydropyridine‐3‐carboxylate, which was cyclized into a bicyclic compound on treatment with ammonium acetate. The structures of all synthesized compounds were confirmed by IR, 1H NMR, and 13C NMR spectroscopy data. The structure of 5‐(5‐chloro‐2‐methylphenyl)‐4‐methyl‐2‐phenyl‐2,5,6,7‐tetrahydro‐3H‐pyrazolo[4,3‐c]pyridin‐3‐one was unambiguously assigned by means of X‐ray analysis data.  相似文献   

20.
Ethyl 7‐amino‐3‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐5‐aryl‐5H‐thiazolo[3,2‐a]pyrimidine‐6‐carboxylate was synthesized by the reaction of 4‐(2‐aminothiazol‐4‐yl)‐3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazoline with arylidene ethyl cyanoacetate and it transformed to related fused heterocyclic systems via reaction with various reagents. The biological activities of these compounds were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号