首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface‐enhanced Raman spectroscopy (SERS) was used for the identification of natural organic dyes belonging to indigoid and anthraquinone classes in archeological samples, and good agreement with the corresponding reference commercial materials was found. Special attention was paid to the well‐known problem of anomalous bands that arise sometimes in the SERS spectra on colloids: as suggested in the literature, this problem could be reduced by the use of poly‐L ‐lysine and ascorbic acid as aggregating agents, but we observed that also the addition first of the analyte and subsequently of suitable electrolytes to the colloid in an inverted order compared to the most widely used method can be of help in limiting the intensity of such spurious bands. This procedure allowed us to obtain, for the first time, the SERS spectra of both modern and ancient Tyrian purple and to solve a specific problem observed in the analysis of archeological wool samples dyed with madder lake, i.e. the competition in the SERS response between the dye and other compounds possibly deriving from the degradation of the peptide chain during the hydrolysis treatment during the extraction of the dye from the wool fiber. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This study reports the Raman (FT‐RS) and absorption infrared (FT‐IR) spectra, based on calculated wavenumbers and normal modes of vibrations, of the following compounds: L ‐Ala‐L ‐NH‐CH(Me)‐PO3H2 (alafosfalin, A1), L ‐Ala‐D ‐NH‐CH(Me)‐PO3H2 (A2), L ‐Ala‐L ‐NH‐CH(Et)‐PO3H2 (A3), D ,L ‐Ala‐D,L ‐NH‐CH(Et)‐PO3H2 (A4), L ‐Ala‐D ‐NH‐CH(iPr)‐PO3H2 (A5), L ‐Ala‐D,L ‐NH‐CH(iPr)‐PO3H2 (A6), L ‐Ala‐D,L ‐NH‐CH(tBu)‐PO3H2 (A7), L ‐Ala‐D,L ‐NH‐CH(iBu)‐PO3H2 (A8), L ‐Ala‐D,L ‐NH‐CH(cBu)‐PO3H2 (A9), L ‐Ala‐D,L ‐NH‐CH(nPA)‐PO3H2 (A10), β‐Ala‐D ‐NH‐CH(Me)‐PO3H2 (A11), and D,L ‐Ala‐NH‐C(Me,Me)‐PO3H2 (A12). The equilibrium geometries and vibrational wavenumbers are calculated using density functional theory (DFT) at the B3LYP; 6–31 + + G** level of theory using Gaussian'03, GaussSum 0.8, and GAR2PED software. We briefly compare and analyze the experimental and calculated vibrational wavenumbers in the range of 3600–400 cm−1. In addition, Raman wavenumbers are compared to those from surface‐enhanced Raman scattering (SERS) for the phosphonodipeptides of alanine (Ala) adsorbed on a colloidal silver surface. The geometry of these molecules etched on the silver surface is deduce from the observed changes in both the intensity and breadth of Raman bands in the spectra of the bound vs free species. For example, A7, A8, A1, A3, and A4 appear to adsorb onto the colloidal silver particles mainly through the phosphonate terminus, and for A3 and A4, through the  C‐NH2 and  CONH fragments. The most dominant SERS bands of A5, A6, A9, A10, and A11 are due to the amide bond vibrations, as well as to the vibrations of the  C‐NH2 group (A9 and A10) and the C C group (A6 and A11). The differences recorded for the A5, A6, A9, A10, and A11 and those of A2 and A12 are due to interactions between the amine and methyl groups with the silver surface, and they reflect vibrational characteristic of these groups. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Surface‐enhanced Raman scattering (SERS) spectroscopy has been used to characterize multilayers of three isomeric aromatic compounds adsorbed on silver nanoclusters. The three structural isomers, all of which adsorb in the carboxylate form onto the silver nanoclusters, bind in two different geometries to the silver surface. Different molecular configurations correlate to differences in bonding strength of these molecules to the silver surface, which can be probed by SERS. For ortho‐hydroxybenzoic acid (salicylic acid), we observed red shifts of major SERS peaks in comparison to the normal Raman vibrations of nonadsorbed crystalline material. For this molecule the steric hindrance between the adjacent carboxylate and hydroxyl groups causes the carboxylate group to rotate from the common flat geometry of benzene substituents on surfaces and bond directly through one of the oxygen atoms to the surface. In this case, strong coordinative bonding between the carboxylate group and the metal surface causes the red shifts in the SERS peaks. For para‐, and meta‐hydroxybenzoic acid, the steric hindrance is less likely since the two functional groups are not at adjacent positions, and therefore these molecules adsorb on the silver surface in a totally flat geometry. For these molecules, in contrast to the ortho isomer, the CO2 interacts with the surface through an extended π bond, and these molecules are physically adsorbed in the common flat position. Therefore, for the meta and para substituents, we do not observe significant red shifts in the SERS spectrum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a highly specific electrochemically roughened SERS‐active Ag substrate characterized by the formation of a 50 – 150 nm Ag islands on its surface. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces and reorientation occurring over time of adsorption were analyzed in this study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Some high‐affinity functional groups or resonant molecules were often used as probe molecules adsorbed on silver nanoparticles for Surface‐enhanced Raman scattering (SERS). However, it is still unclear how the attached molecules interact with the silver nanoparticles' surface, and how the anchoring groups affect the optical and electronic properties of molecules. Here, we report that surface‐enhanced Raman studies of two organic compounds; rhodamine 6G (R6G) and its aminated derivative (R‐NH2) have very different functional groups for surface binding but nearly identical SERS spectroscopic properties at pH = 7 and UV–vis at pH = 3, respectively. A surprise was found that under the same experimental conditions, the SERS signal intensity for R6G is nearly 50‐fold higher than that of R‐NH2. Furthermore, the pH‐dependent study reveals that the structure of R6G is irreversibly stabilized or ‘locked’ in its form and no longer responsive to pH changes. In contrast, R‐NH2 is still sensitive to pH, and can be switched between its open‐ring and closed‐ring structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The interaction of l ‐tryptophan (Trp) with silver colloids was investigated at between pH values of 6.11 and 10.6 of the sol. The measurements of surface‐enhanced Raman bands of Trp in the colloidal solution indicate the evolution of interaction between the metal particles and the molecules with increasing pH values for the sol. The experimental observations were explained using the estimated atomic charge distribution in the zwitterionic and anionic forms of the residue, obtained by density functional theory calculations. The variation in the ratio of the spectral intensities of the Fermi resonance bands with the pH reflects the effect of the colloidal environment on Trp. The results obtained can be used as a marker for describing the nature of the interaction of silver colloids with the specific terminus of the residue, at varying pH environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A comparative study of molecular structures of five L ‐proline (L ‐Pro) phosphonodipeptides: L ‐Pro‐NH‐C(Me,Me)‐PO3H2 (P1), L ‐Pro‐NH‐C(Me,iPr)‐PO3H2 (P2), L ‐Pro‐L ‐NH‐CH(iBu)‐PO3H2 (P3), L ‐Pro‐L ‐NH‐CH(PA)‐PO3H2 (P4) and L ‐Pro‐L ‐NH‐CH(BA)‐PO3H2 (P5) has been carried out using Raman and absorption infrared techniques of molecular spectroscopy. The interpretation of the obtained spectra has been supported by density functional theory calculations (DFT) at the B3LYP; 6–31 + + G** level using Gaussian 2003 software. The surface‐enhanced Raman scattering (SERS) on Ag‐sol in aqueous solutions of these phosphonopeptides has also been investigated. The surface geometry of these molecules on a silver colloidal surface has been determined by observing the position and relative intensity changes of the Pro ring, amide, phosphonate and so‐called spacer (−R) groups vibrations of the enhanced bands in their SERS spectra. Results show that P4 and P5 adsorb onto the silver as anionic molecules mainly via the amide bond (∼1630, ∼1533, ∼1248, ∼800 and ∼565 cm−1), Pro ring (∼956, ∼907 and ∼876 cm−1) and carboxylate group (∼1395 and ∼909 cm−1). Coadsorption of the imine nitrogen atom and PO group with the silver surface, possibly by formation of a weaker interaction with the metal, is also suggested by the enhancement of the bands at 1158 and 1248 cm−1. P1, P2 and P3 show two orientations of their main chain on the silver surface resulting from different interactions of the  C CH3,  NH and  CONH fragments with this surface. Bonding to the Ag surface occurs mainly through the imino atom (1166 cm−1) for P2, while for P1 and P3 it occurs via the methyl group(s) (1194–1208 cm−1). The amide group functionality (CONH) is practically not involved in the adsorption process for P1 and P2, whereas the Cs P bonds do assist in the adsorption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
We report surface enhanced Raman spectroscopy (SERS) of Darling–Dennison resonance of thiourea on Ag electrode excited at 514.5 nm laser excitation. Darling–Dennison resonance indicates that two degenerate Raman modes interact with each other and their degenerate first‐order overtone modes obtain energy and appear in Raman spectra. Our study showed that the ratio of intensity of the Darling–Dennison resonance is up to 0.24 of its fundamental Raman intensity, when the applied electrode voltage is at –0.4 V versus the saturated calomel electrode. This phenomenon was also observed on the Ag island film surface at ambient condition. These observations demonstrated strong evidence for Darling–Dennison resonance band in SERS. The implications of these observations are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Raman and surface enhanced Raman scattering (SERS) spectroscopies were used to study the pH effect (7 to 9) on the interaction of arginine (Arg) with colloidal Ag nanoparticles (AgNps). A new methodology was implemented in order to obtain reproducible SERS spectra in solution. The dependence of the Arg concentration on the stability of the AgNps is discussed. A pH increasing of the colloidal solution to the limits of the Arg pKa2 value induces a preferential and stable Arg–metal interaction. ξ potential measurements of the Arg–AgNps system at different pH conditions studied provide information about the Arg–AgNps interaction; the pH increasing favors the interaction. SERS spectra at pH 7 indicate that the molecule interacts with the Ag surface only through the guanidinium fragment. By increasing the pH to 9, the molecule adopts a new conformation on the surface; the metal–analyte interaction is verified through the guanidinium, carboxylate and the aliphatic moieties. In addition, theoretical calculations performed by using the extended Hückel method for a model of Arg interacting with an Ag surface support the observed SERS results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Surface-enhanced Raman scattering (SERS) spectra of 2-cyanopyridine (2 CP) adsorbed on silver colloidal particles have been investigated. The prominent SERS bands are observed at 556, 612, 778, 1002, 1060, 1072, 1150 and 1240 cm−1. The absolute enhancement factor of the Raman signals in SERS studies has been estimated to be of the order of 102–105 for various bands. The 2CP molecules have been ascribed to adsorb on colloidal particles in standing up fashion.  相似文献   

12.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a colloidal assembly of apparently randomly adhering Ag spheres with diameters of approximately 20 – 25 nm. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces were analyzed in this study. Briefly, it was shown that Pip, in generally in vertical orientation, and Thi, in the edge‐on position, relative to the colloidal Ag surface interacted with this surface through their lone electron pairs on the nitrogen and sulfur atoms, respectively. The imide bond of the X‐Pro peptide linkage and the guanidine group of Arg were involved in the adsorption process. In addition, it was demonstrated that the specific differences in the amino acid sequences slightly influenced the mode of adsorption. For example, Aaa in Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK and D‐Phe (vertical with respect to the colloidal Ag surface) in [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK assisted in the adsorption of these peptides onto the colloidal Ag particles. To discuss these spectral alterations due to the different surface adsorption mechanisms of these peptides, the spectral changes were analyzed according to the adsorption process and Fourier‐transform‐Raman spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Signal enhancement observed in surface‐enhanced Raman spectroscopy (SERS) is attributable to the presence of noble‐metal nanostructures on substrate surfaces. The rational development of SERS‐active substrates depends critically on the homogeneity and intensity of surface plasmon resonances, properties that are strongly dependent on both the morphology and dielectric properties of the metals and composite materials making up the SERS substrates. Enhancement can be controlled by the shape, size, and spacing of metallic nanoparticles. Previous studies in our group have shown that arrays of elliptical nanodiscs have promising geometries for this purpose. Using electron beam lithography (EBL), we fabricate close‐packed arrays of these discs with lateral dimensions ranging from 300:50 to 300:300 nm (long axis : short axis). The arrays are composed of a negative photoresist that, once the lithography process is complete, are coated with a noble metal through physical vapor deposition (PVD). In this work, optimum thickness and deposition rate of noble metal are determined for these substrates. The lithographically produced nanopatterns are studied by Raman spectroscopy to examine the effect of altering the elliptical aspect ratio on SERS activity, while scanning electron microscopy (SEM) is used to examine pattern surfaces post lithographic development and post noble‐metal deposition. Atomic force microscopy (AFM) is used to inspect the roughness of substrate surfaces. Reproducibility between different arrays of the same pattern ranges from 12 to 28%. Homogeneity of our uniform‐morphology EBL/PVD‐fabricated substrates is examined and compared to our random‐morphology polymer nanocomposite substrates. Using rhodamine 6G as an analyte, an increase in SERS signal is noted as the aspect ratio of ellipses goes from 6:1 to 6:6. Our experimental data, in terms of trends in SERS activity, correlate with trends in field enhancements calculated using a simple electrostatic model and with the magnitude of the broad red‐shifted spectral continuum observed for the substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
For the first time, we report experimentally and theoretically that nitroaromatic compounds, 2,4‐dinitrobenzenethiol and 4‐chloro‐2‐nitrobenzenethiol, on silver sols can be selectively reduced to 2‐amino‐4‐nitrobenzenethiol and 2‐amino‐4‐chlorobenzenethiol simply by irradiating with a visible light in ambient conditions, and the selective photoreduction is a very facile process. The results of quantum chemical calculations are in good agreement with our experimental data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In the present study, several natural organic dyes used in antiquity, especially in textile dyeing, were analysed by surface‐enhanced Raman scattering (SERS) spectroscopy, in order to build a wide database that could integrate the data previously published in the literature. In particular, we reported for the first time the SERS spectra of 11 dyes: dragon's blood, sandalwood, annatto, safflower yellow and red, old fustic, gamboge, catechu, kamala, aloe and sap green. Silver colloids (Ag colloids) prepared according to the Lee–Meisel procedure, i.e. by reduction of a silver nitrate (AgNO3) aqueous solution with trisodium citrate dihydrate, were used as substrate. As its efficiency had been tested in a previous work, sodium perchlorate (NaClO4) 1.8 M was again employed as aggregating agent, giving the best results when added to the silver nanoparticles after the analyte. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Graphite oxide (GO) was successfully silylated by 3‐mercaptopropyltrimethoxysilane. The surface‐enhanced Raman scattering spectrum of the silylated GO sheets sandwiched between colloidal silver nanoparticles and silver piece is presented. The Raman signal shows a 104 enhancement compared to that of bulk GO. The large Raman enhancement is most likely a result of electromagnetic (EM) coupling between the colloidal silver nanoparticles (localized surface plasmon) and the silver piece (surface plasmon polariton), creating large localized EM fields at their interface, where the silylated GO sheets reside in this sandwich architecture. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This work used infrared absorption and Raman spectroscopy to determine the structure of seven modified fragments (residues 6–14 of the polypeptide chain) of bombesin (BN6–14). The peptides studied are cyclo[D ‐Phe6, His7, Leu14]BN6–14, [D ‐Phe6, Leu‐NHEt13, des‐Met14]BN6–14, [D ‐Phe6, Leu13‐®‐p‐chloro‐Phe14]BN6–14, [D ‐Phe6, β‐Ala11, Phe13, Nle14]BN6–14, [D ‐Tyr6, β‐Ala11, Phe13, Nle14]BN6–14, [D ‐Tyr6, β‐Phe11, Phe13, Nle14OH]BN6–14 and [D ‐Cys6, Asn7, D ‐Ala11, Cys14]BN6–14. These peptides are potent bombesin agonists useful in the treatment of tumors. Surface‐enhanced Raman scattering (SERS) spectroscopy was also used to examine the behavior of these molecules on an electrochemically roughened silver surface. The SERS spectra reveal that substituting native amino acids in these molecules with synthetic ones changes their adsorption state slightly on an electrochemically roughened surface of silver. The peptides [D ‐Tyr6, β‐Ala11, Phe13, Nle14]BN6–14 and [D ‐Tyr6, β‐Phe11, Phe13, Nle14OH]BN6–14 tend to adsorb strongly on this surface via C fragment (∼1400 cm−1). The observed medium enhancement of the Trp8 residue and amide bond Raman signals indicate further interactions between these fragments and the surface. [D ‐Phe6, Leu‐NHEt13, des‐Met14]BN6–14 and [D ‐Cys6, Asn7, D ‐Ala11, Cys14]BN6–14 are shown to be coordinated to the silver through  CONH , CO, and the indole ring. The strongest SERS bands (∼1506, ∼1275, ∼1149, and ∼1007 cm−1) of [D ‐Phe6, Leu13‐®‐p‐chloro‐Phe14]BN6–14 and [D ‐Phe6, β‐Ala11, Phe13, Nle14]BN6–14 suggest that these two peptides bind to the silver via Trp8 and  CONH . In the case of cyclo[D ‐Phe6, His7, Leu14]BN6–14, the formation of a peptide/Ag complex is confirmed by the strong SERS bands involving Trp8 and  CONH vibrations, which are accompanied by a SERS signal due to the CO vibrations. For these analogs, the relative potency for inhibition of binding of 125I‐[Tyr4]BN to rat pancreas acini cells was correlated with the behavior of the amide bond on the silver surface, while the contribution of the structural components to the ability to interact with the rGRP‐R was correlated with the SERS patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium.  相似文献   

20.
The Raman and surface‐enhanced Raman scattering (SERS) spectra of l ‐proline (Pro) and trans‐4‐hydroxy‐ l ‐proline (Hyp) were recorded. SERS spectra were obtained on colloidal Ag prepared by reduction with hydroxylamine. Allowing sufficient time for Pro and Hyp to adjust in the colloidal solution resulted fundamentally in obtaining unique and reproducible SERS spectra. Hyp stabilizes on the surface more rapidly than Pro. The spectral analysis indicates that Pro interacts with the Ag surface through the carboxylate group. The interaction of Hyp with the metal surface occurs through the amino, methylene and carboxylate moieties of the molecule. The spectroscopic results are supported by quantum chemical calculations, performed using extended Hückel theory (EHT) of the title compounds interacting with an Ag cluster model. The assignment of the Raman bands was supported by a normal coordinate analysis performed through Becke, three‐parameter, Lee–Yang–Parr/6‐311 G* + calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号