Block copolymers consisting exclusively of a silicon–oxygen backbone are synthesized by sequential anionic ring‐opening polymerization of different cyclic siloxane monomers. After formation of a poly(dimethylsiloxane) (PDMS) block by butyllithium‐initiated polymerization of D3, a functional second block is generated by subsequent addition of tetramethyl tetravinyl cyclotetrasiloxane (D4V), resulting in diblock copolymers comprised a simple PDMS block and a functional poly(methylvinylsiloxane) (PMVS) block. Polymers of varying block length ratios were obtained and characterized. The vinyl groups of the second block can be easily modified with a variety of side chains using hydrosilylation chemistry to attach compounds with Si—H bond. Conversion of the hydrosilylation used for polymer modification was investigated. 相似文献
A new three‐step synthetic pathway to generate polycyclic annulated hydantoins via rarely investigated heterocyclic imines is described. This procedure includes a one‐pot reaction forming imines as precursor structures (e.g., Asinger reaction), followed by an Ugi reaction to build up a bisamide structure that allows a ring‐closing reaction to the targeted hydantoins via substitution. This pathway leads to a multiplicity of substances with a potential pharmacological activity. 相似文献
Summary: The debate on the mechanism of dithiobenzoate‐mediated RAFT polymerization may be resolved by including the reaction between a propagating radical and the star‐shaped combination product from irreversible termination into the kinetic scheme. By this step, a highly reactive propagating radical and a not overly stable three‐arm star species are transformed into the resonance‐stabilized RAFT intermediate radical and a very stable polymer molecule. The time evolution of concentrations is discussed for the main‐equilibrium range of CDB‐mediated methyl acrylate polymerization.
Illustration of the novel understanding of the RAFT mechanism in dithiobenzoate‐mediated RAFT polymerization. 相似文献
A novel α,ω‐heterofunctional poly(ethylene oxide) (PEO) macromonomer possessing methacryloyl and thienyl end groups was prepared by ring‐opening polymerization of ethylene oxide initiated by potassium thienylethoxide and termination of the living PEO ends with methacryloyl chloride. Incorporation of methacryloyl and thienyl groups was confirmed by free‐radical and oxidative polymerization processes, respectively, and by means of 1H NMR analysis.
A new functional lactone, α‐iodo‐ε‐caprolactone (αIεCL), was synthesized from ε‐caprolactone by anionic activation using a non‐nucleophilic strong base (lithium diisopropylamide) followed by an electrophilic substitution with iodine chloride. Ring‐opening (co)polymerizations of the resulting monomer with ε‐caprolactone were carried out using tin 2‐ethylhexanoate as a catalyst in toluene at 100 °C. Homopolymerization of αIεCL was achieved, and poly(αIεCL) was fully characterized by SEC, 1H NMR and elemental analysis. Random copolymerizations of αIεCL with εCL were controlled with experimental molecular weights close to the theoretical values, narrow molecular weight distributions and a good agreement between experimental and theoretical molar compositions of αIεCL.
Herein we present the functionalization of freestanding silicon nanosheets (SiNSs) by radical‐induced hydrosilylation reactions. An efficient hydrosilylation of Si?H terminated SiNSs can be achieved by thermal initiation or the addition of diazonium salts with a variety of alkene or alkyne derivatives. The radical‐induced hydrosilylation is applicable for a wide variety of substrates with different functionalities, improving the stability and dispersibility of the functional SiNSs in organic solvents and potentially opening up new fields of application for these hybrid materials. 相似文献
We present the synthesis and switching studies of systems with two photochromic dihydroazulene (DHA) units connected by a phenylene bridge at either para or meta positions, which correspond to a linear or cross‐conjugated pathway between the photochromes. According to UV/Vis absorption and NMR spectroscopic measurements, the meta‐phenylene‐bridged DHA–DHA exhibited sequential light‐induced ring openings of the two DHA units to their corresponding vinylheptafulvenes (VHFs). Initially, the VHF–DHA species was generated, and, ultimately, after continued irradiation, the VHF–VHF species. Studies in different solvents and quantum chemical calculations indicate that the excitation of DHA–VHF is no longer a local DHA excitation but a charge‐transfer transition that involves the neighboring VHF unit. For the linearly conjugated para‐phenylene‐bridged dimer, electronic communication between the two units is so efficient that the photoactivity is reduced for both the DHA–DHA and DHA–VHF species, and DHA–DHA, DHA–VHF, and VHF–VHF were all present during irradiation. In all, by changing the bridging unit, we can control the degree of stepwise photoswitching. 相似文献
A new versatile synthesis strategy for macromonomers has been developed that uses the living ring‐opening metathesis polymerization (ROMP) with commercial Grubbs first generation ruthenium initiators. Homopolymers as well as diblock copolymers were end‐functionalized with norbornene derivatives to serve as macromonomers. The graft copolymerization of the macromonomers was also carried out employing ROMP. Well‐defined and highly functional graft copolymers are accessible by this new synthetic route.