首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Flower‐like self‐organized crystalline ZnO architectures were obtained through a facile and controlled hydrothermal process. As‐synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), electron diffraction and UV‐Vis spectroscopy. XRD and electron diffraction results confirmed the obtained materials are pure wurtzite ZnO. The effects of different ratios of starting materials and solvent on the morphologies of ZnO hydrothermal products were also evaluated by SEM observations. It is suggested that the use of water, rather than ethanol as the solvent, as well as employing a precursor of Zn(Ac)2 and 2NaOH (v/v) in hydrothermal reactions are responsible for the generation of specific flower‐like self‐assembled ZnO structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

3.
We synthesized In2O3/ZnO/Al‐doped ZnO (AZO) core‐double shell nanowires, in which the inner shell (ZnO) and the outer shell (AZO) have been subsequently deposited on the core In2O3 nanowires. With their one‐dimensional morphology being preserved, the X‐ray diffraction (XRD), lattice‐resolved transmission electron microscopy (TEM) image, selected area electron diffraction, and Raman spectrum coincidentally revealed that the shell was comprised of hexagonal ZnO phase. In addition, TEM‐EDX investigation revealed the presence of Al elements in the shell region. The thermal annealing at 700 °C did not significantly change the nanowire morphology, however, the XRD spectrum indicated that the ZnO phase was crystallized by the annealing. PL spectrum of the 700 °C‐annealed In2O3/ZnO/AZO core‐double shell nanowires was comprised of three Gaussian bands at approximately 2.1 eV, 2.4 eV, and 3.0 eV, respectively. The integrated intensities of 2.1 eV‐, 2.4 eV‐, and 3.0 eV‐bands were decreased by the thermal annealing. This study will pave the road to the preparation and applicaition of double‐shelled nanowires. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Hierarchical flower‐like Bi2Te3 was synthesized through a facile solvothermal method. The crystal structure and morphology of the as‐prepared samples were characterized by X‐ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and high resolution TEM. The reaction parameters such as reaction time, the amount of glucose, concentration of NaOH and the reaction temperature were systematically investigated. Based on the FESEM observations, a possible mechanism defined as a self‐assembly process accompanied by anisotropic growth mechanism was proposed. Moreover, the thermoelectric properties were measured at the temperature range of 300–600 K. The hierarchical flower‐like Bi2Te3 presented good thermoelectrical properties. The maximum ZT value reached up to 0.6 at 600 K, which was higher than that of Bi2Te3 nanoparticles.  相似文献   

5.
Radial‐like ZnO structures were prepared using zinc sulfate (ZnSO4·7H2O) and zinc acetate [Zn(CH3COO)2·2H2O] as zinc sources by a facile template‐free hydrothermal method in this paper. Structural and optical properties of radial‐like ZnO structures are characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV‐vis spectrophotometer and photoluminescence measurement (PL). It has been found that the distinct surface morphologies of radial‐like ZnO structures grown by different zinc sources. Slim radial‐like ZnO with a hexagonal wurtzite structure is grown by using ZnSO4·7H2O as zinc sources, whereas coarse radial‐like ZnO with zincite structure is achieved by zinc acetate. The UV‐vis absorption spectra of them both display an obvious and significant absorption in the ultraviolet region. The room temperature PL spectra of ZnO structures grown by two different zinc sources possess a common feature that consists of a strong ultraviolet (UV) peak and visible emission band.  相似文献   

6.
In this article, we report a novel but simple method for the phase transformation of ZnO2 to flower‐like ZnO microstructures hydrothermally at 90 °C with and without the assistance of hexadecylamine as surfactant. The generation of zincate ion ZnO$^{2-}_{2}$ as a growth unit from the reaction between ZnO2 and peroxide ion O$^{2-}_{2}$ in situ plays a key role in the phase transformation of ZnO2 to ZnO. The morphology, structure, and composition of the products have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Powder X‐ray diffraction (PXRD) and energy dispersive X‐ray analysis (EDX). It has been demonstrated that the as‐fabricated ZnO flowers are composed of self‐assembled brooms and rods in the presence and absence of hexadecylamine respectively. On the basis of experimental results, a possible reaction mechanism and the growth processes involved in the formation of flower‐like ZnO microstructures are discussed.  相似文献   

7.
In this research we report synthesis of the heterostructure Mg‐Al‐Zn mixed metal oxide (ZnO/MMO) nanocomposite photocatalysts derived from Zn(OH)2/Mg‐Al‐layered double hydroxides (ZLDHs) precursors. The obtained samples were characterized by the X‐ray diffraction (XRD), FT‐IR, BET surface area, ICP and TG/DTG methods. The chemical compositions and morphology of the synthesized materials were investigated by the energy dispersive X‐ray analysis (EDX) and the transmission electron microscopy (TEM). The results reveal that at the reaction time 96 h, ZLDH has the highest crystalinity which was confirmed by the X‐ray diffraction spectra. The calcined samples at 500, 600 and 700 °C for 4 h show that the crystallinity of the nanocomposite improves with the increase of calcination temperature. The photocatalytic activities of synthesized nanocomposites were compared for the degradation of C. I. Basic Blue 3 (BB3) dye under UV illumination in aqueous solution. Among the synthesized nanocomposites, ZnO/MMO calcined at 700 °C shows the highest efficiency towards the removal of dye. The effect of UV illumination on the stability of ZnO in ZnO/MMO nanocomposite and pure ZnO was also investigated. The results showed that the photostability of ZnO in ZnO/MMO nanocomposite is increased compared to the pure ZnO.  相似文献   

8.
A zinc oxide (ZnO) nanoarray (rod‐like nanostructure) was successfully synthesized through a low‐temperature aqueous solution and microwave‐assisted synthesis using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) as raw materials, and using FTO glass as substrate. The effects of parameters in the preparation process, such as solution concentration, reaction temperature and microwave power, on the morphology and microstructure of ZnO nanoarray were studied. Phase structure and morphology of the products were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that hexagonal wurtzite structure ZnO nanoarray with good crystallization could be prepared through a low‐temperature solution method. When the concentration of the mixed solution was 0.05 M, the reaction temperature was 95 °C, and the reaction time was 4 h, high‐density ZnO regular nanorods of 200 nm diameter were obtained. A possible mechanism with different synthesis methods and the influence of microwave processing are also proposed in this paper.  相似文献   

9.
The flower‐like ZnO with micro‐nano hierarchical structure is successfully obtained by a simple hydrothermal synthesis, using sodium dodecyl benzene sulfonate (SDBS) as a structure direct agent. The resulted ZnO micro‐flowers are very uniform in morphology with particle sizes around 1 µm. A number of techniques, including X‐ray diffraction (XRD), field emission scan electron microscopy (FESEM), energy‐dispersive spectroscopy (EDS), fourier transform infrared (FTIR) spectra and thermogravimetry analysis (TGA), are used to characterize the obtained ZnO. The self‐assemble of ZnO nano‐sheets under the direction of SDBS leads to the formation of ZnO micro‐flowers. The room temperature photoluminescence property of the obtained flower‐like ZnO exhibits a broad visible light emission. The surface of as‐made ZnO shows a very hydrophilic property, while the special micro‐nano hierarchical structure enables the ZnO micro‐flower a superhydrophobic surface after modification of fluoroalkylsilane.  相似文献   

10.
ZnO with a “flower‐like” morphology was synthesized using a simple microwave assisted hydrothermal method and used as an acceptor material in hybrid solar cells. X‐Ray diffraction and Raman Spectroscopy confirmed the formation of a highly crystalline wurtzite ZnO structure. A highly crystalline and conductive polyaniline with “worm‐like” morphology was synthesized by chemical polymerization of aniline using KH(IO3)2 as an oxidant and was used as a donor material for solar cells. The morphology was probed by using scanning and transmission electron microscopy. Polyaniline with worm‐like morphology had a diameter of 160 nm and about 2 µm long. Solar cell device fabricated from PANI/ZnO active bilayer demonstrated a fill factor of about 22.8%. Upon blending PANI with ZnO the fill factor was improved to 25.6% and efficiency by almost 100 fold when PANI:ZnO 1:1 composite was used as an bulk heterogeneous active layer. The fill factor was further improved to 26.4% when device architecture was changed to diffused bilayer. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Flower‐like hierarchical nanostructures of titanium dioxide (TiO2) have been synthesized in large scale by a facile and controlled hydrothermal and after annealing process. The morphologies of flower‐like hierarchical nanostructures are formed by self‐organization of several tens of radially distributed thin flakes with a thickness of several nanometers holding a larger surface area. The materials are characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The ultraviolet photocatalytic degradation of R6G dyes has been studied over this flower‐like hierarchical nanostructures and the activity is compared with that of commercial P25 TiO2 under same conditions. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Well‐faceted hexagonal ZnO nanorods have been synthesized by a simple hydrothermal method at relative low temperature (90°C) without any catalysts or templates. Zinc oxide (ZnO) nanorods were grown in an aqueous solution that contained Zinc chloride (ZnCl2, Aldrich, purity 98%) and ammonia (25%). Most of the ZnO nanorods show the perfect hexagonal cross section and well‐faceted top and side surfaces. The diameter of ZnO nanorods decreased with the reaction time prolonging. The samples have been characterized by X‐ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurement. XRD pattern confirmed that the as‐prepared ZnO was the single‐phase wurtzite structure formation. SEM results showed that the samples were rod textures. The surface‐related optical properties have been investigated by photoluminescence (PL) spectrum and Raman spectrum. Photoluminescence measurements showed each spectrum consists of a weak band ultraviolet (UV) band and a relatively broad visible light emission peak for the samples grown at different time. It has been found that the green emission in Raman measurement may be related to surface states. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
TeO2‐core/ZnO‐shell nanorods were synthesized by a two–step process comprising thermal evaporation of Te powders and atomic layer deposition of ZnO. Scanning electron microscopy images exhibit that the core‐shell nanorods are 50 ‐ 150 nm in diameter and up to a few tens of micrometers in length, respectively. Transmission electron microscopy and X‐ray diffraction analysis revealed that the cores and shells of the core‐shell nanorods were polycrystalline simple tetragonal TeO2 and amorphous ZnO with ZnO nanocrystallites locally, respectively. Photoluminescence measurement revealed that the TeO2 nanorods had a weak broad violet band at approximately 430 nm. The emission band was shifted to a yellowish green region (∼540 nm) by encapsulation of the nanorods with a ZnO thin film and the yellowish green emission from the TeO2‐core/ZnO‐shell nanorods was enhanced significantly in intensity by increasing the shell layer thickness. The highest emission was obtained for 125 ALD cycles (ZnO coating layer thickness: ∼15 nm) and its intensity was much higher than that of the emission from the uncapsulated TeO2 nanorods. The origin of the enhancement of the emission by the encapsulation is discussed in detail. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The influence of annealing atmosphere on the optical properties of flower‐like ZnO is investigated. The flower‐like ZnO is composed of nanosheets. Annealing at 500°C results in the increase of the thickness of nanosheets and the enhancement of UV emission. PL spectra results show that the annealing atmosphere affects the visible emission band, which is sensitive to intrinsic and surface defects in the flower‐like ZnO. The vibrational properties of the flower‐like ZnO annealing in different atmospheres are characterized by Raman spectra. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Uniform capsule‐like α‐Fe2O3 particles were synthesized via a simple hydrothermal method, employing FeCl3 and CH3COONa as the precursors and sodium dodecyl sulfate (SDS) as soft template. X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy were used to characterize the structure of synthesized products. Some factors influencing the formation of capsule‐like α‐Fe2O3 particles were systematically investigated, including different kinds of surfactants, the concentration of SDS, and reaction times. The investigation on the evolution formation reveals that SDS was critical to control the morphology of final products, and a possible five‐step growth mechanism was presented by tracking the structures of the products at different reaction stages.  相似文献   

16.
In this paper, chalcopyrite AgInS2 nanorods were synthesized for the first time by a one‐step, ambient pressure, environment friendly organic molten salt (OMS) method at 200 °C. The as‐synthesized products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The XRD results reveal that the as‐synthesized products at 120–160 °C under ambient pressure contain AgIn5S8 which will decrease with the increase of growth temperature. A sample containing only the chalcopyrite AgInS2 phase is successfully obtained at 200 °C. Furthermore, the elemental compositions are found to become increasingly stoichiometric with increasing temperature. UV‐Vis and photoluminescence (PL) spectra are utilized to investigate the optical properties of AgInS2 nanorods. By testing on UV‐Vis spectra, it is concluded that the limiting wavelength of the AgInS2 nanorods is 661 nm and the band gap is 1.88 eV. A broad red emission band peak centered at about 1.874 eV (662 nm) is clearly observed at room temperature, and the intensity of the emission increases with excitation wavelength. In addition, the photoluminescence quantum yield (PLQY) of the nanocrystals at the excitation wavelength of 250 nm was determined to be 13.2%. A possible growth mechanism of AgInS2 nanorods was discussed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Novel hierarchical nano materials possess tremendous latent force in many applications. In this paper, hierarchical flower‐like, spherical and bowl‐like zinc oxide was successfully synthesized by altering solvent ratio (absolute ethanol and diethylene glycol) via a simple and template‐free solvothermal synthetic route. The solvent ratio also plays a vital role in deciding the structure, crystalline, band gap energy and specific surface area of the as‐synthesized samples. The preparation mechanism of ZnO in mixed alcohols was discussed. The obtained samples were characterized by energy dispersive spectroscopy(EDS), X‐ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), N2 adsorption‐desorption, UV–vis diffuse reflectance spectroscopy (DRS). Photocatalytic activity of the as‐prepared ZnO nanocrystals was evaluated by the degradation of MB under UV irradiation. Among, the most effective photocatalyst was synthesized when the diethylene glycol was 10 ml.  相似文献   

18.
Flowerlike structured In2O3 were successfully synthesized via a hydrothermal process and the subsequent calcinations. The obtained sample consists of microrods with an average diameter of 0.5‐1 μm and a length of 1‐3 μm. Structure and property of the sample were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The sensing properties towards trimethylamine (TMA) were examined at 200‐400 °C, which showed high sensitivity, better selectivity, and prompt response/recovery merits. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Single‐crystalline Zinc oxide (ZnO) nanorods were firstly synthesized on gold‐coated Si substrate via a simple thermal reduction method from the mixture of ZnO and Al powder. The growth process was carried out in a quartz tube at different temperature (550‐700 °C) and at different oxygen partial pressure. Their structure properties were investigated by X‐ray diffraction (XRD), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The length of the as‐prepared ZnO nanorods was up to several micrometers and their diameters were about 130 nm. The X‐ray diffraction patterns, transmission electron microscopic images, and selective area electron diffraction patterns indicate that the one‐dimensional ZnO nanorods are a pure Single‐crystal and preferentially oriented in the [0001] direction. The reaction mechanism of ZnO nanorods was proposed on the basis of experimental data. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Sphere‐like Mo2C nanoparticles have been synthesized through the reaction of sodium molybdate, anhydrous ethanol and sodium azide at 450 °C for 10 h in a sealed stainless steel autoclave. X‐ray powder diffraction results indicated that the final product was Mo2C. Transmission electron microscopy (TEM) and scanning elctron microscopy (SEM) were employed to characterize the as‐prepared sample. The sample was mostly composed of sphere‐like particles, which has a superconducting transition temperature of 9.5 K, and its calculated surface area is 30.859 m2/g. The experimental parameters such as reaction temperature and reactants were studied to investigate the reaction mechanism. It was found that sodium azide and reaction temperature played key roles in the formation of sphere‐like Mo2C nanoparticles. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号