共查询到20条相似文献,搜索用时 15 毫秒
1.
For the seeding process of oxide Czochralski crystal growth, the flow and temperature field of the system as well as the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used initially in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and non‐rotating seed crystal. At first the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF coil was calculated. Using this heat source the fluid flow and temperature field were determined in the whole system. We have considered two cases with respect to the seed position: (1) before and (2) after seed touch with the melt. It was observed that in the case of no seed rotation (ωseed = 0), the flow pattern in the bulk melt consists of a single circulation of a slow moving fluid. In the gas domain, there are different types of flow motion related to different positions of the seed crystal. In the case of touched seed, the seed‐melt interface has a deep conic shape towards the melt. It was shown that an active afterheater and its location with respect to the crucible, influences markedly the temperature and flow field of the gas phase in the system and partly in the melt. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
For the seeding process of oxide Czochralski crystal growth, influence of the crucible bottom shape on the heat generation, temperature and flow field of the system and the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and seed crystal. At first, the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF‐coil was calculated. Using this heat generation in the crucible wall as a source the fluid flow and temperature field of the entire system as well as the seed‐melt interface shape were determined. We have considered two cases, flat and rounded crucible bottom shape. It was observed that using a crucible with a rounded bottom has several advantages such as: (i) The position of the heat generation maximum at the crucible side wall moves upwards, compared to the flat bottom shape. (ii) The location of the temperature maximum at the crucible side wall rises and as a result the temperature gradient along the melt surface increases. (iii) The streamlines of the melt flow are parallel to the crucible bottom and have a curved shape which is similar to the rounded bottom shape. These important features lead to increasing thermal convection in the system and influence the velocity field in the melt and gas domain which help preventing some serious growth problems such as spiral growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
Carbon contamination in single crystalline silicon is detrimental to the minority carrier lifetime, one of the critical parameters for electronic wafers. In order to study the generation and accumulation of carbon contamination, transient global modeling of heat and mass transport was performed for the melting process of the Czochralski silicon crystal growth. Carbon contamination, caused by the presence of carbon monoxide in argon gas and silicon carbide in the silicon feedstock, was predicted by the fully coupled chemical model; the model included six reactions taking place in the chamber. A simplified model for silicon carbide generation by the reaction between carbon monoxide and solid silicon was proposed using the closest packing assumption for the blocky silicon feedstock. The accumulation of carbon in the melted silicon feedstock during the melting and stabilization stages was predicted. Owing to this initial carbon content in the melt, controlling carbon contamination before the growth stage becomes crucial for reducing the carbon incorporation in a growing crystal. 相似文献
4.
The thermal and flow transport in an inductively heated Czochralski crystal growth furnace during a crystal growth process is investigated numerically. The temperature and flow fields inside the furnace, coupled with the heat generation in the iridium crucible induced by the electromagnetic field generated by the RF coil, are computed. The results indicate that for an RF coil fixed in position during the growth process, although the maximum value of the magnetic, temperature and velocity fields decrease, the convexity of the crystal‐melt interface increases for longer crystal growth lengths. The convexity of the crystal‐melt interface and the power consumption can be reduced by adjusting the relative position between the crucible and the induction coil during growth. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
A three‐dimensional numerical analysis was carried out for a real Czochralski crystal growth furnace containing only gas and without any melt and crystal in order to investigate the effects of a small observation window on the temperature and flow field of the system. For this approach, the induction heating equations, the Navier‐Stokes equation with Boussinesq approximation, the continuity and energy equations have been solved in cylindrical coordinates using the finite element method. It has been found that the flow and thermal fields in the system are obviously three‐dimensional and non‐axisymmetric. The gas enters the system through the window is directed towards the opposite side wall where it is divided into two parts of vertical direction as well as expands in horizontal direction. Consequently, there is a spiral gas flow in the crucible and afterheater which rotates upwards in azimuthal direction along the walls. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
6.
K.-H. 《Progress in Crystal Growth and Characterization of Materials》1999,38(1-4):59-71
The physical principles of electromagnetic stirring with a rotating magnetic field are explained and a mathematical model to calculate the electromagnetic volume force, the fluid flow and the transport of heat and solutes is outlined. For the electromagnetic volume force and for the order of magnitude of the flow velocities approximative analytical expressions are given. A high flexibility in configuring the volume force in order to achieve a desired flow distribution is obtained by multi-frequency stirring that is by superposition of two or several magnetic fields with different frequencies and/or sense of rotation. Results of experimental investigation and mathematical simulation of multi-frequency stirring are given. Numerical simulation of the fluid flow, the temperature and the oxygen distribution in a Czochralski process crucible was performed including the effect of single mode and multi-frequency stirring. The results indicate that electromagnetic stirring should offer large potentials for the optimization of the flow configuration in a Czochralski process crucible. Finally examples from literature of practical application of rotating magnetic fields in crystal growth are presented. 相似文献
7.
N. Crnogorac H. Wilke K. A. Cliffe A. Yu. Gelfgat E. Kit 《Crystal Research and Technology》2008,43(6):606-615
The motivation for this study is the need for accurate numerical models of melt flow instabilities during Czochralski growth of oxides. Such instabilities can lead to undesirable spiralling shapes of the bulk crystals produced by the growing process. The oxide melts are characterized by Prandtl numbers in the range 5<Pr <20, which makes the oxide melt flow qualitatively different from the intensively studied flows of semiconductors characterized by smaller Prandtl numbers Pr <0.1. At the same time, these flows can be modelled experimentally by many transparent test fluids (e.g. water, silicon oils, salt melts), which have similar Prandtl numbers, but allow one to avoid the extremely high melting‐point temperatures of the oxide materials. Most previous studies of melt instabilities for Prandtl numbers larger than unity suffer from a lack of accuracy that is caused by the use of coarse grids. Recent convergence studies made for a series of simplified problems and for a hydrodynamic model of Czochralski growth showed that for a second order finite volume method reliable stability results can be obtained on grids having at least 100 nodes in the shortest spatial direction. The obvious numerical difficulties call for an extensive benchmark exercise, which is proposed here on the basis of recently published experimental and numerical data, as well as some preliminary results of this study. The calculations presented are performed by two independent numerical approaches, which are based on second‐order finite volume and finite element discretizations. We start our comparison from the steady states, whose parametric dependencies sometimes exhibit turning points and multiplicity. We then compare the critical temperature differences corresponding to the onset of instability, and finally compare calculated supercritical oscillatory states and phase plots. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
8.
Mohammad Hossein Tavakoli Talaye Arjmand Abasi Shirin Omid Ebrahim Mohammadi‐Manesh 《Crystal Research and Technology》2013,48(2):58-68
In this paper, for an inductively heated Czochralski furnace used to grow sapphire single crystal, influence of the inner (wall‐to‐wall) and crystal internal (bulk) radiation on the characteristics of the growth process such as temperature and flow fields, structure of heat transfer and crystal‐melt interface has been studied numerically using the 2D quasi‐steady state finite element method. The obtained results of global analysis demonstrate a strong dependence of thermal field, heat transport structure and crystal‐melt interface on both types of radiative heat transfer within the growth furnace. 相似文献
9.
The goal of the research presented here is to apply a global analysis of an inductively heated Czochralski furnace for a real sapphire crystal growth system and predict the characteristics of the temperature and flow fields in the system. To do it, for the beginning stage of a sapphire growth process, influence of melt and gas convection combined with radiative heat transfer on the temperature field of the system and the crystal‐melt interface have been studied numerically using the steady state two‐dimensional finite element method. For radiative heat transfer, internal radiation through the grown crystal and surface to surface radiation for the exposed surfaces have been taken into account. The numerical results demonstrate that there are a powerful vortex which arises from the natural convection in the melt and a strong and large vortex that flows upwards along the afterheater side wall and downwards along the seed and crystal sides in the gas part. In addition, a wavy shape has been observed for the crystal‐melt interface with a deflection towards the melt. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
K. Kakimoto L. Liu H. Miyazawa S. Nakano D. Kashiwagi X. J. Chen Y. Kangawa 《Crystal Research and Technology》2007,42(12):1185-1189
Heat and mass transfer during crystal growth of bulk Si and nitrides by using numerical analysis was studied. A three‐dimensional analysis was carried out to investigate temperature distribution and solid‐liquid interface shape of silicon for large‐scale integrated circuits and photovoltaic silicon. The analysis enables prediction of the solid‐liquid interface shape of silicon crystals. The result shows that the interface shape became bevel like structure in the case without crystal rotation. We also carried out analysis of nitrogen transfer in gallium melt during crystal growth of gallium nitride using liquid‐phase epitaxy. The result shows that the growth rate at the center was smaller than that at the center. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
Heat and mass transfer taking place during growth of Y3Al5O12 (YAG) crystals by the Czochralski method, including inner radiation, is analyzed numerically using a Finite Element Method. For inner radiative heat transfer through the crystal the band approximation model and real transmission characteristics, measured from obtained crystals, are used. The results reveal significant differences in temperature and melt flow for YAG crystals doped with different dopands influencing the optical properties of the crystals. When radiative heat transport through the crystal is taken into account the melt‐crystal interface shape is different from that when the radiative transport is not included. Its deflection remains constant over a wide range of crystal rotation rates until it finally rapidly changes in a narrow range of rotation rates. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
12.
The influence of the melt flow on the temperature field and interface during the vapour‐pressure‐controlled growth of GaAs was studied numerically with the commercial general‐purpose program FIDAPTM. The thermal boundary conditions for the domain of seed, crystal, boron oxide and crucible were taken from a global calculation for an equipment used at the IKZ to grow 6″ crystals. Due to the large melt volume the buoyancy forces become rather strong and have to be counteracted by reasonable rotation rates. Preliminary results have been obtained for iso‐ and counter‐rotation showing that the flow field exhibits structures on small scales. High rotation rates are needed to counteract the buoyancy flow efficiently and to achieve a smooth flat interface. Even if the the flow structure is not resolved in detail, the interface shape can be deduced form the calculations. 相似文献
13.
For accurate prediction of carbon and oxygen impurities in a single crystal produced by the Czochralski method, global simulation of coupled oxygen and carbon transport in the whole furnace was implemented. Both gas-phase transportation and liquid-phase transportation of oxygen and carbon were considered. With five chemical reactions considered, SiO and CO concentrations in gas and C and O atom concentrations in silicon melt were solved simultaneously. The simulation results show good agreement with experimental data. 相似文献
14.
A. Voigt C. Weichmann J. Nitschkowski E. Dornberger R. Hlz 《Crystal Research and Technology》2003,38(6):499-505
The formation of grown‐in defects in silicon crystals is controlled by the concentration of intrinsic point defects. Under steady state conditions the type of the prevailing point defect species is linked to the ratio of pull rate and temperature gradient in the crystal at the solidification front. It has been shown that this ratio as well as computed point defect distributions are in good agreement with experimental data. In this paper we compare a coupled transient heat transfer and transient point defect transport model with quasi steady state simulations at various time steps. Both simulations show the same qualitative results, quantitative differences in temperature are less than 1 %. But already for constant pull rates the defect distributions show qualitative differences between transient and quasi steady state simulations. Therefore, for a detailed understanding how defects are related to growth conditions, the thermal history should not be neglected. 相似文献
15.
Yasuto 《Progress in Crystal Growth and Characterization of Materials》1999,38(1-4):261-272
The flow in an oxide melt such as LiNbO, and TiO2 in a high magnetic field was observed by using magnetic-field-applied Czochralski equipment for oxide crystals. It was found that the flows in oxides melts were very much different from these in a semiconductor melt. The single crystals of TiO2 were grown in a magnetic field by using this equipment. 相似文献
16.
W. Miller 《Crystal Research and Technology》2001,36(7):675-683
A phase‐field‐like approach is introduced into the commercial general‐purpose program FIDAPTM to calculate the melt‐crystal interface for a quasi‐stationary approach of the Czochralski growth. Temperature and flow field are solved using the segregated solver of the FIDAPTM software. 相似文献
17.
Numerical investigations have been performed for modeling the global temperature field of an industrial liquid phase epitaxy (LPE) facility and to estimate the temperature fluctuations in a Te‐rich solution during the LPE growth. The numerical results agreed well with experimental data and therefore provide reliable reference points for experimenters for further improvements of the growth conditions. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
19.
X. J. Chen L. J. Liu H. Tezuka Y. Usuki K. Kakimoto 《Crystal Research and Technology》2007,42(10):971-975
A global simulation model is applied for a silicon carbide growth system heated by induction coils. A finite‐volume method (FVM) and a global model are applied to solve the equations for electromagnetic field, conductive and radiative heat transfer. The growth rate is predicted by Hertz‐Knudsen equation and one‐dimensional mass transfer equation. Further, simulations for five different coil positions are carried out to investigate the effects of coil position on temperature distribution in the furnace. The numerical results reveal that the variation of temperature in the radial direction along the substrate surface and the temperature difference between the powder and substrate are greatly affected by the coil position. The predicted growth rate along the substrate surface for five coil positions is also studied. Finally, a reasonable range of coil positions maintaining a balance between large‐diameter crystal, high growth rate, temperature limitation of material and lower electrical power consumption is obtained. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
C. M. Ruiz E. Saucedo L. Fornaro V. Bermúdez E. Diguez 《Crystal Research and Technology》2004,39(10):886-891
In this work, we present a theoretical analysis of the behaviour of the temperature profile for the Modified Markov Method. We have assumed different materials and different thicknesses for the insulating element. Comparison of preliminary results with experimental evidences, demonstrate us the reliability of our model. Discussion among our calculated results are provided and future outlooks for the experimental work are fixed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献