首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The anodic and cathodic behaviour of the complexesmer-[ReCl(CO)3(PMe2Ph)2],fac[ReCl(CO)3(PMe2Ph)2],mer-[ReCl(CO)3(PPh3)2], and [ReCl(CO)2(PMe2Ph)3] in acetonitrile solvent were studied using platinum and mercury electrodes. Cyclic voltammetry and controlled potential coulometry were the main electroanalytical techniques employed. The nature of the electrolysis products and of the electrode oxidation and reduction processes were investigated. In particular, [ReCl(CO)(MeCN)2(PMe2Ph)3][ClO4]2, [ReCl3(CO)2(PMe2Ph)2], and a not completely defined rhenium(-I) complex were electrochemically synthesized and characterized by means of i.r. and1H n.m.r. spectroscopy, and by elemental analysis.  相似文献   

2.
Synthesis of a group of carbonyl rhenium coordination compounds with hydrospirophosphorane ligands was carried out and described. Different symmetrical HP(OCH2CH2NH)2 L1 , HP(OCH2CMe2NH)2 L2 , HP(OC6H4NH)2 L3 , and unsymmetrical ligands HP (OCMe2CMe2O)(OC6H4NH) L4 were found to coordinate to the rhenium center as bidentate P,N donor ligands yielding fac-[ReCl (CO)3 Ln ], where n = 1 – 4. Furthermore, monodentate coordination was also observed in some cases, as was clearly presented in the case of [ReCl(CO)2( L4- κ2P,N)( L4- κP)] complex. All of the complexes were characterized using optical spectroscopy. Single-crystalX-ray diffraction was also performed in the case of fac-[ReCl(CO)3 L3 ], fac-[ReCl(CO)3 L4 ], [Re(CO)2( L2 )2]Cl and [ReCl (CO)2( L4- κ2P,N)( L4- κP)] samples. Complexes [ReCl(CO)3 L3 ] and [ReCl (CO)3 L4 ], both bearing rings of conjugated double bonds within hydrospirophosphorane ligands, exhibited luminescence. Catalytic properties of rhenium complexes were assessed using the representative fac-[ReCl (CO)3 L2 ] complex in the dimerization reaction of terminal alkynes. An efficient and selective procedure for synthesis of the E - enynes was developed. Coupling of (2-chlorophenyl)acetylene was mediated by [ReCl (CO)3 L2 ]/TBAF system with a 100% conversion rate. Different substituents within aromatic alkynes were tolerated and the resulting products were dependent on the nature of the substituents.  相似文献   

3.
Summary Treatment oftrans-[Mo(CNMe)2(PMe2Ph)4] andme-[W(CNMe)3(PMe2Ph)3] with sulphuric or hydrochloric acids in methanol or ethanol, or in methanol alone, under irradiation, gives methylamine, ammonia and hydrocarbons (mainly methane). The complex [W2(CNMe)4(-CNHMe)2(PMe2Ph)4]2+ cation has been obtained by the treatment ofmer-[W(CNMe)3(PMe2Ph3] with H2SO4 or [Et2OH][BF4] and gives methylamine, ammonia and methane on further acid treatment.  相似文献   

4.
Summary The compoundtrans-[MoCl2(PMe2Ph)4] has been prepared by the reduction of MoCl5 (by Mg) or of [MoCl3(PMe2Ph)3] (by LiBun) in the presence of PMe2Ph in tetrahydrofuran (THF). It has eff=2.84 B.M. and crystallises in space group P1 witha=11.591(3),b=12.931(3),c=12.703(3) Å, = 95.28(2), =105.97(2), =103.54(2)°. Refinement of the structure gave R=0.036. The Mo-Cl and Mo-P distances average 2.443(6) and 2.534(8) Å, respectively.Low-valent phosphine complexes of the Group VI metals continue to attract much attention because of their involvement in studies of the catalytic activation of dinitrogen(1), dihydrogen(2, 3), alkenes and alkynes(4). As a by-product during our studies of dinitrogen(1) and hydride(2) complexes of molybdenum and tungsten, we obtainedtrans-[MoCl2- (PMe2Ph)4] as yellow, paramagnetic crystals (eff= 2.84 B.M.). We first obtained the compound during the attempted synthesis ofcis-[Mo(N2)2(PMe2Ph)4] by reduction of MoCl5 with Mg in the presence of PMe2Ph (see Experimental). Upon identification of the compound we found that it could be readily synthesised by treatment of [MoCl3(PMe2Ph)3](5) with LiBun in THF in the presence of PMe2Ph (experimental).The complex was shown to have thetrans structure by x-ray analysis (Figure). Analogues oftrans-[MoCl2(PMe2Ph)4] have been prepared, namely [CrCl2(Me2PCH2CH2PMe2)2](6),trans- [MoCl2(PMe3)4](7), [WCl2(PMe2Ph)4](8) and [WCl2(PMe3)4](4), of which onlytrans-[MoCl2(PMe3)4] has been examined by X-rays(7). Its principal structural parametersi.e. d(Mo-Cl)= 2.420(6), d(Mo-P)av=2.496(3) Å(6) are close to those found here fortrans-[MoCl2(PMe2Ph)4].  相似文献   

5.
The complexes [ReCl(N2)(PMe2Ph)jtJ. Amer. Chem. Soc.43] and [ReCl(N2)(PMe2Ph)3(pyridine)] react with organic acid halides, RCOCl, to form acylazo- and aroylazo-complexes, [ReCl2(N2COR)(PMe2Ph)3], for which X-ray diffraction studies confirm the formation of the NC bond; the osmium complex [OsCl2(N2)(PEt2Ph)3] does not undergo analogous reactions.  相似文献   

6.
[Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) reacts with PMe2Ph in CH3CN to give the red cation [Ir(PMe2Ph)4]+. This complex in CH3CN reacts with H2 to give cis-[IrH2(PMe2Ph)4]+, but on reflux for 6 h in the absence of H2, it gives the first example of a cyclometallated PMe2Ph complex fac-[IrH(PMe2C6H4)(PMe2Ph)3]+, as shown by PMR spectroscopy and preliminary X-ray crystallographic data.  相似文献   

7.
The reduction of ReCl4(THF)2 in the presence of excess t-butylisocyanide by sodium amalgam produces pentakis(t-butylisocyanide)chlororhenium(I), which has been converted to the corresponding methyl and ethyl derivatives. The reaction of pentakis(trimethylphosphine)chlororhenium(I) with ButNC gives partially substituted complexes, ReCl(CNBut)2(PMe3)3 and ReCl(CNBut)3(PMe3)2. The structures of both compounds have been determined by X-ray methods. Octahedral ReCl(CNBut)2(PMe3)3 has trans isocyanide groups with one linear [C---N---C = 175(1)°] and one slightly bent [C---N---C = 159(1)°]. The Re---C bond lengths are equal within experimental error [2.004(7), 2.003(7)Å]. In the octahedral ReCl(CNBut)3(PMe3)2, for which the structure is not well defined, due to disorder, the unique isocyanide trans to chlorine is considerably bent at the nitrogen atom [C--- ---C = 141(6)°] and appears to show the shortest Re---C bond length, 1.94(5) vs 2.02(5)Å for the other two isocyanides which are mutually trans. Protonation of these two isocyanide complexes with fluoroboric acid gives, respectively, the salts [ReCl(CNBut)CNHBut(PMe3)3]BF4 and [ReCl(CNBut)2CNHBut(PMe3)2]BF4, whose configurations have been determined by NMR spectroscopy. The reduction by sodium amalgam of Cr2(CO2Me)4 in tetrahydrofuran in presence of ButNC gives a high yield of Cr(CNBut)6 while similar reduction of the dimeric tungsten(II) complex of the anion (mhp) of 2-methyl-6- hydroxypyridine gives W(CNBut)6. Interaction of W2(mhp)4 in methanol-ether with ButNC gives a tungsten(I) complex W2(η-mhp)2(ButNC)4, which may be an intermediate in the reductive cleavage reaction. Interaction of cis-PtMe2(PMe3)2 with ButNC leads only to replacement of one PMe3 group to give the complex cis-PtMe2(PMe3)(CNBut).  相似文献   

8.
2,7-Dimethyl-1,8-naphthyridine (L1) reacts with pentacarbonylchlororhenium in toluene or chloroform to give the target complex fac-{ReCl(CO)3(L1)}. X-ray crystallographic data were obtained for fac-{ReCl(CO)3(L1)}. The structural and 1H NMR data suggest that the ligand coordinates to the rhenium in a bidentate fashion in both solid and solution states. The complex was also found to be luminescent in both solution and solid states. The fluxionality of the ligand in solution causes ligand-centred emission to be observed in solution, whereas only 3MLCT emission was observed in the solid state. Although the complex was air-stable, the lability of L1 was studied in 1H NMR experiments where CD3OD induced complete ligand dissociation over the course of 24 h, and also in reaction of fac-{ReCl(CO)3(L1)} with one equivalent of 2,2′-bipyridine in chloroform which resulted in quantitative ligand exchange. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The first metal complex of di-2-pyridyl­methanone p-nitro­phenyl­hydrazone (dpknph), i.e. the title compound, fac-[ReCl(C17H13N5O2)(CO)3]·C2H6OS, crystallizes as well separated pseudo-tetrahedral DMSO (DMSO is di­methyl sul­foxide) and pseudo-octahedral fac-[ReCl(dpknph)(CO)3] moieties. Two N atoms from dpknph, three C atoms from the carbonyl groups and one chloride ion occupy the coordination sphere around rhenium. The coordinated dpknph ligand forms a six-membered ring in a boat conformation, with the pyridine rings in a butterfly formation. The p-nitro­phenyl­hydrazone moiety is planar, with all C and N atoms in sp2-hybridized forms. The mol­ecules pack as stacks of interlocked fac-[ReCl(dpknph)(CO)3]·DMSO units via a network of non-covalent bonds that include solute–solute, solvent–solute and π–π interactions.  相似文献   

10.
Treatment of trans-[TcX4L2] (X Cl, Br and L PPH3, PMe2Ph) with carbon monoxide (1 atm) in boiling ethyleneglycol methyl ether, gives trans-[TcX-(CO)3L2]. Under these conditions the mer-[TcX3(PMe2Ph)3] (X Cl, Br) gives a mixture of the trans-[TcX(CO)3(PMe2Ph)2] and cis-[TcX(CO)2(PMe2Ph)3] complexes, but when added free dimethylphenylphosphine is present only the second product is obtained. Carbon monoxide reacts with mer-[TcCl3(PMe2Ph)3] in refluxing ethanol to give [TcCl3(CO)(PMe2Ph)3] a C3 v seven-coordinate technetium(III) complex.The stereochemistry of the complexes was determined from their IR and1H NMR spectra.  相似文献   

11.
[Ru(CO)4PMe3] reacts with MeI to give fac-[Ru(CO)3(PMe3)(Me)I]. The latter reacts with PMe3 to give a mixture of the three isomers of cis-bis(trimethylphosphine)-cis-dicarbonyl acetyl iodide [Ru(CO)2(PMe3)2(COMe)I]. Decarbonylation of the mixture gives only the trans-bis(trimethylphosphine)-cis-dicarbonyl methyl iodide complex [Ru(CO)2(PMe3)2MeI], which was also prepared by oxidative addition of MeI to [Ru(CO)3(PMe3)2].  相似文献   

12.
Summary Upon u.v. irradiation of [Fe(CO)4(PR 3 )] with HSiR3 (HSiR3 = HSiMePh2, PR3 = PPh3; HSiR3 = HSiMe2Cl, PR3 = PPh3 or PMe2Ph; HSiR3 = HSiMeCl2, PR3 = PPh3, PMePh2, PMe2Ph or PMe3; HSiR3 = HSiCl3, PR3 = PPh3, PMePh2, PMe2Ph, PMe3 or PBu 3 n ) the corresponding hydridosilyl complexes [Fe(CO)3H(PR3)SiR3] are formed. The complexes have themer configuration with acis disposition of the hydride and the silyl ligands. Prolonged irradiation with an excess of silane results in the formation of bis-silyl complexes [Fe(CO)3(PR3)(SiR3)2], if electron density at the metal is not too high. Thus, [Fe(CO)3H(PPh3)SiMePh2] and [Fe(CO)3-H(PMe2Ph)SiMe2Cl] can be obtained but not the corresponding bis-silyl complexes. Most bis-silyl complexes are obtained asmer-isomers with acis-arrangement of the silyl ligands. Only for [Fe(CO)3(PR3)(SiCl3)2] with small phosphine ligands (PR3 = PMe3 or PMe2Ph) is thefac-isomer formed.Part VII of this series, ref. (1).  相似文献   

13.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

14.
Summary Bidentate ligands can readily replace acetone in thefac-[Mn(CO)3(chel)(OCMe2)]+ complexes or the perchlorate group fromfac-[Mn(CO)3(chel)(OClO3)] yieldingfac-[Mn(CO)3(chel)(L-L)]+ or [{fac-Mn(CO)3(chel)}2(L-L)]2+ [chel = 1,10-phenanthroline (phen), 2,2-bipyridine (bipy), 1,2-bis(diphenylphosphine)ethane (dpe); L-L = bis(diphenylphosphine)methane (dpm), dpe, 1,4-bis(diphenylphosphine)butane (dpb), succinonitrile (suc), and glutaronitrile (glu)]. Some of these mononuclear complexes are precursors for binuclear complexes which are linked by bridging phosphines or nitriles.  相似文献   

15.
The reaction between [{Ru(CO)Cl2(PMe2Ph)2}2] and SnBu3(C5H7) in chloroform yields the η3-pentadienyl complex [Ru(CO)Cl(η3-C5H7)(PMe2Ph)2]. The 1H NMR spectra are reported and discussed.  相似文献   

16.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

17.
18.
A dichloromethane solution of the cationic carbonyl complex [IrCl2(CO)(PMe2Ph)3)][ClO4] reacts with aqueous KOH to give [IrCl2(CO2H)(PMe2Ph)3] which has been characterised spectroscopically. This CO2H compound is very much more basic and very much less acidic than [IrCl2(CO2H)(CO)(PMe2Ph)2). Tertiary amines will not deprotonate [IrCl2(CO2H)(PMe2Ph)3] while Li[N(SiMe3)2] leads to decarboxylation products trans, mer- and cis, mer-[IrHCl2(PMe2Ph)3]. The mechanisms of these reactions are considered and the hydroxycarbonyl complex is compared with its formato isomer which decarboxylates much less readily.  相似文献   

19.
The complex fac-(η2-C60)(η2-dppe)Cr(CO)3 (dppe?=?1,2-bis(diphenylphosphino)ethane and C60?=?[60]fullerene) reacts with piperidine (pip) to produce fac-(η2-C60)(η1-pip)2Cr(CO)3. The reactions are first order with respect to [?fac-(η2-C60)(η2-dppe)Cr(CO)3] under flooding conditions where [pip]???[?fac-(η2-C60)(η2-dppe)Cr(CO)3]. The pseudo-first order rate constant values (k obsd) are [pip]-dependent. Curved (upward) plots of k obsd versus [pip] and linear plots of k obsd versus [pip]2 indicate that the piperidine-assisted dppe displacement from fac-(η2-C60) (η2-dppe)Cr(CO)3 is second order with respect to [pip]. The proposed mechanism involves a [60]fullerene-stabilized intermediate.  相似文献   

20.
Clusters Os3H(Cl)(CO)9(L) (L= CO, PMe2Ph) react with lithium phenyl-acetylide to yield Os3H(CO)9(L)(μ-η2-CCPh),which has a bridging acetylide ligand. The Os3H(CO)10(μ-η2-CCPh) complex (II) is fluxional owing to rapid π → σ, σ → π interchange of acetylide ligand between the bridged osmium atoms, whereas the phosphine-substituted derivative, Os3H(CO)9(PM2Ph)(μ-η2-CCPh) (III), is stereochemically rigid and exists at room temperature in two isomeric forms. These isomers have been isolated as solids and have been characterized by 1H and 31P{1H} NMR spectroscopy. According to the spectroscopic data, in the major (IIIa) and minor (IIIb) isomers the phosphine ligand is coordinated to the metal atom which is σ- or π-bonded to the bridging acetylide group, respectively. The isomerization of IIIb into IIIa occurs only at 80°C. The structure of IIIa has been confirmed by an X-ray diffraction study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号