首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of vibrational excitation of HBr on the H+HBrH2+Br and H+HBrH+HBr reactions has been investigated on the extended LEPS surface (ELEPS) constructed on the basis of quantum chemically calculated points of PES. Together with this surface the LEPS surface of Sudhakaran and Raff [1] was used for comparison at two relative translational energies. A quasiclassical trajectory method was used to study the abstraction and exchange reaction dynamics. The reactive cross section was calculated as a function of the relative collision energy and the vibrational state of HBr. The following conclusions can be drawn from the results of the study: (i) vibrational excitation v=0 v=2 more than doubles the reaction cross section, (ii) the increase in the collision energy is most effectively channelled into the product translational energy.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   

2.
The method of quasi-classical trajectories on an LEPS hypersurface was used for studying the influence of the exchange of one or both of the hydrogen atoms for deuterium in the reaction H1 + H2Br. As expected, the reaction cross sections of the exchange and abstraction reactions were found to increase if H1 was replaced by D and decrease if H2 was replaced by deuterium. A similar change in the reaction cross sections have also been observed for vibrationally excited reactants. The distribution of vibrational (rotational) energy is related to the ωe (Be) values of the respective reactants and products.  相似文献   

3.
基于LEPS势能面, 用三维含时量子波包法对O(3P)+HBr(DBr)反应进行了准确的动力学计算. 计算的结果表明, 振动激发对这个反应是有效的, 而转动激发在某一能量范围内具有方位效应. 计算得到了该反应的速率常数和反应截面, 速率常数kO+HBr的计算值同实验值符合得很好. 通过对相应结果的对比, 可以发现这个反应具有比较明显的同位素效应.  相似文献   

4.
基于LEPS势能面, 用三维含时量子波包法对O(3~P)+HBr(DBr)反应进行了准确的动力学计算. 计算的结果表明, 振动激发对这个反应是有效的, 而转动激发在某一能量范围内具有方位效应. 计算得到了该反应的速率常数和反应截面, 速率常数kO+HBr的计算值同实验值符合得很好. 通过对相应结果的对比, 可以发现这个反应具有比较明显的同位素效应.  相似文献   

5.
Quantum state-to-state dynamics for the H + HBr(υ(i) = 0, j(i) =0) reaction was studied on an accurate ab intio potential energy surface for the electronic ground state of BrH(2). Both the H + HBr → H(2) + Br abstraction reaction and the H' + HBr → H'Br + H exchange reaction were investigated up to a collision energy of 2.0 eV. It was found that the abstraction channel is dominant at lower collision energies, while the exchange channel becomes dominant at higher collision energies. The total integral cross section of the abstraction reaction at a collision energy of 1.6 eV was found to be 1.37 A?(2), which is larger than a recent quantum mechanical result (1.06 A?(2)) and still significantly smaller than the experimental value (3 ± 1 A?(2)). Meanwhile, similar to the previous theoretical study, our calculations also predicted much hotter product rotational state distributions than those from the experimental study. This suggests that further experimental investigations are highly desirable to elucidate the dynamic properties of the title reactions.  相似文献   

6.
Experimentally observed product quantum state distributions across a wide range of abstraction reactions at suprathreshold collision energies have shown a strong bias against product internal energy. Only a fraction, sometimes quite a small fraction, of the energetically accessible product quantum states are populated. Picconatto et al. [J. Chem. Phys. 114, 1663 (2001)] noted a simple mathematical relationship between the highest-energy rovibrational states observed and the kinematics of the reaction system. They proposed a reaction model based on reaction kinematics that quantitatively explains this behavior. The model is in excellent agreement with measured quantum state distributions. The assumptions of the model invoke detailed characteristics of reactive trajectories at suprathreshold collision energies. Here we test those assumptions using quasiclassical trajectory calculations for the abstraction reactions H+HCl-->H2+Cl, D+HCl-->HD+Cl, and H+DCl-->HD+Cl. Trajectories were run on a potential-energy surface calculated with a London-Eyring-Polyani-Sato function with a localized 3-center term (LEPS-3C) previously shown to accurately reproduce experimentally observed product state distributions for the H+HCl abstraction reaction. The trajectories sample collision energies near threshold and also substantially above it. Although the trajectories demonstrate some aspects of the model, they show that it is not valid. However, the inadequacy of the proposed model does not invalidate the apparent kinematic basis of the observed energy constraint. The present results show that there must be some other molecular behavior rooted in the reaction kinematics that is the explanation and the source of the constraint.  相似文献   

7.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

8.
The rate constants for the reaction of C6H5 with HBr and DBr have been measured with the cavity–ring–down method in the temperature range of 297 to 523 K and 297 to 500 K, respectively. These rate constants can be effectively represented, in units of cm3/s, by Both activation energies are similar and positive, contrary to those of alkyl radical reactions, all of which exhibit negative temperature dependencies. The difference, as pointed out before [1], could be accounted for by the electron-withdrawing effect of the phenyl vis-à-vis the electron-donating ability of the alkyls. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Three-dimensional time-dependent quantum wave packet calculation for the O((1)D)+HBr reaction has been carried out using an accurate ab initio global potential energy surface [K. A. Peterson, J. Chem. Phys. 113, 4598 (2000)]. The calculations show that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The energy dependence of the reaction cross section is computed, which manifests still resonance structures, and is a decreasing function of the translational energy. The thermal rate constants are also computed, which are nearly independent on the temperature. The calculation results are discussed and compared to similar reaction with deep well.  相似文献   

10.
HBr+ (A2Σ+-X2Πi) and DBr+ (A2Σ+-X2Πi) emissions are found up to v′=1 and v=2, respectively, from the thermal energy charge transfer reactions of Ar+ with HBr and DBr molecules in a flowing afterglow apparatus. Both A-state vibrational distributions have a peak at the lowest vibrational level, which are inconsistent with those expected from the energy resonance and/or Franck-Condon factors for ionization. This discrepancy is explained in terms of the distortion of target molecules by approach of reactant ions. Both A-state rotational distributions show that energies partitioned into rotation decrease with increasing vibrational levels, whereas the internal energy is nearly constant for all vibrational levels. The vibrational and rotational distributions obtained suggest that the reaction occurs at a relatively short distance and the product has a broad translational energy distribution.  相似文献   

11.
12.
Dual‐level direct dynamics method is used to study the kinetic properties of the hydrogen abstraction reactions of CH3CHBr + HBr → CH3CH2Br + Br (R1) and CH3CBr2 + HBr → CH3CHBr2 + Br (R2). Optimized geometries and frequencies of all the stationary points and extra points along the minimum‐energy path are obtained at the MPW1K/6‐311+G(d,p), MPW1K/ma‐TZVP, and BMK/6‐311+G(d,p) levels. Two complexes with energies less than that of the reactants are located in the entrance of each reaction at the MPW1K/6‐311+G(d,p) and MPW1K/ma‐TZVP levels, respectively. The energy profiles are further refined with the interpolated single‐point energies method at the G2M(RCC5)//MPW1K/6‐311+G(d,p) level of theory. By the improved canonical variational transition‐state theory with the small‐curvature tunneling correction (SCT), the rate constants are evaluated over a wide temperature range of 200–2000 K. Our calculations have shown that the radical reactivity decreases from CH3CHBr to CH3CBr2. Finally, the total rate constants are fitted by two modified Arrhenius expression. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
《Chemical physics letters》1986,127(4):343-346
In this work we use a complete surface hopping quasiclassical trajectory method to determine cross sections for the reactions H2+ + H2 → H3+ + H and the isotopic variants (H2+ + D2 and D2+ + H2). Initial translational energies ranged between 0.5 and 6 eV. The vibrational quantum number (v+) of the charged diatom is either 0 or 3. Comparing these results with our previous results with a partial treatment of surface hopping, we find essentially no change for v+ = 0 and reductions in cross sections of up to 30% for v+ = 3 trajectories.  相似文献   

14.
We report quasiclassical trajectory calculations of the dynamics of the two reaction channels of formaldehyde dissociation on a global ab initio potential energy surface: the molecular channel H(2)CO-->H(2) + CO and the radical H(2)CO-->H + HCO. For the molecular channel, it is confirmed that above the threshold of the radical channel a second, intramolecular hydrogen abstraction pathway is opened to produce CO with low rotation and vibrationally hot H(2). The low-j(CO) and high-nu(H(2) ) products from the second pathway increase with the total energy. The competition between the molecular and radical pathways is also studied. It shows that the branching ratio of the molecular products decreases with increasing energy, while the branching ratio of the radical products increases. The results agree well with very recent velocity-map imaging experiments of Suits and co-workers and solves a mystery first posed by Moore and co-workers. For the radical channel, we present the translational energy distributions and HCO rotation distributions at various energies. There is mixed agreement with the experiments of Wittig and co-workers, and this provides an indirect confirmation of their speculation that the triplet surface plays a role in the formation of the radical products.  相似文献   

15.
A full dimensional ab initio potential energy surface for the CH5+ system based on coupled cluster electronic structure calculations and capable of describing the dissociation of methonium ion into methyl cation and molecular hydrogen (J. Phys. Chem. A 2006, 110, 1569) is used in quasiclassical trajectory calculations of the reaction CH3++HD-->CH2D++H2 for low collision energies of relevance to astrochemistry. Cross sections for the exchange are obtained at several relative translational energies and a fit to the energy dependence of the cross sections is used to obtain the rate constant at temperatures between 10 and 50 K. The calculated rate constant at 10 K agrees well with the previously reported experimental value. Internal energy distributions of the products are presented and discussed in the context of zero-point energy "noncompliance".  相似文献   

16.
UHF and CI calculations, using the direct CI method, and double-zeta plus polarization functions basis sets, have been performed on the more important parts of the energy hypersurface for CH5. The abstraction H + CH4 → H2 + CH3 and the inversion substitution reaction H′ + CH4 → CH3H′ + H have been studied in detail. The predicted barriers for these two reactions are 13.5 and 36.6 kcal/mol, respectively. The abstraction reaction is, in agreement with experiment, found to be almost thermo-neutral with a heat of reaction of 1.5 kcal/mol.  相似文献   

17.
We report state-to-state and overall thermal rate constants for the isotope exchange reaction D((2)S)+OH((2)Pi)-->OD((2)Pi)+H((2)S) for 0 K相似文献   

18.
To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho’s potential energy surface(PES) of 2A″ state. Product polarizations such as product distributions of P(θr), P(φr) and P(θr,φr), as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions. Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.  相似文献   

19.
The recently proposed ab initio single-sheeted double many-body expansion potential energy for the methylene molecule has been used to perform quasiclassical trajectory (QCT) calculations for the title reaction. Thermal and initial state-specific (v = 0, j = 0) rate constants for the C((1)D) + H(2)/HD/D(2) reactions have been obtained over a wide range of temperatures. Cross sections for the reaction C((1)D) + H(2) and its deuterated isotopes have also been calculated, as well as the CD/CH branching ratios for the C((1)D) + HD reaction. It is found that the CD + H product channel in the C((1)D) + HD reaction is preferred relative to the CH + D channel. The estimated rate constants are predicted to be in the order k(H2) > k(HD) > k(D2) and the calculated cross sections and rate constants compared with available theoretical and experimental data.  相似文献   

20.
Energy distributions in the products of the ion-molecule reaction Cl? + HBr → HC1 + Br? have been studied using quasiclassical trajectories on a semi-empirical collinear potential energy surface. Vibrational energy is favored in the products. While some trajectories are long-lived, the kinematic factor of the light central atom prevents effective energy redistribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号