首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evidence is presented which indicate that the second-order Coriolis interaction play an important role in intramolecular vibrational redistribution.  相似文献   

2.
《Chemical physics letters》1986,126(2):124-128
The fluorescence emitted from the initially prepared vibronic level (IPL) in S1 of pyrimidine vapor is polarized and the degree of polarization varies remarkably for excitation along the rotational contour of various vibronic absorption bands, whereas the broad fluorescence emitted from levels to which the molecule is transferred from the IPL as a result of intramolecular vibrational redistribution (IVR) is nearly depolarized. On the basis of these results, the role of molecular rotation in IVR is discussed.  相似文献   

3.
The intramolecular redistribution of excess vibrational energy (IVR) in electronically excited perylene is being studied by fluorescence techniques. Analysis has shown, in agreement with the literature, little evidence of relaxation of fundamental modes up to ? 1100 cm?1. However, it is also shown, contrary to literature assertions, that combination states from 700 to 1100 cm?1 do not relax significantly on the time-scale of molecular fluorescence. The picture is simplified by reassignment of several key combination bands in the spectrum. Excitation at higher energies reveals differences in behaviour between combination bands involving high-frequency fundamentals and those only using fundamentals < 800 cm?1. In the latter case, the persistence of narrow-line emission indicates substantially slower relaxation rates. As an example, the 1600 cm?1 fundamental state appears to relax substantially faster than the 1603 cm?1 satellite state, which is assigned to 35335501. This kind of disparity has been observed up to 2000 cm?1. These data provide evidence for the importance of anharmonic interactions in determining the relative rates of IVR over short energy ranges.  相似文献   

4.
Ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations of Mn(2)(CO)(10) in a series of linear alcohols reveal that the rate of intramolecular vibrational redistribution among the terminal carbonyl stretches is dictated by the average number of hydrogen bonds formed between the solute and solvent. The presence of hydrogen bonds was found to hinder vibrational redistribution between eigenstates, while leaving the overall T(1) relaxation rate unchanged.  相似文献   

5.
Some molecules with more than 10 atoms and more than two torsional degrees of freedom have state densities sufficient for rapid (1010 s?1) intramolecular vibrational redistribution at energies as low as 0.25 kcal/mol. Predicted features of low-resolution microwave (LRMW) band spectra of rapidly relaxing polar prolate molecules are discussed and compared with LRMW spectra of ethyl esters.  相似文献   

6.
Previous state-selected spectra of methanol in the 5nu(1) OH stretch overtone region [O. V. Boyarkin, T. R. Rizzo, and D. S. Perry, J. Chem. Phys. 110, 11346 (1999)] revealed a structure indicating an intramolecular vibrational redistribution on three time scales. Whereas in that work, methanol in the 5nu(1) bright state was prepared close to the staggered conformation, methanol in the "partially eclipsed" conformation is prepared here by double resonance excitation through a torsionally excited intermediate state. The excited molecules are detected by infrared laser assisted photofragment spectroscopy. In partially eclipsed methanol, the strong coupling of the nu(1) OH stretch to the nu(2) CH stretch becomes weaker, but the coupling responsible for the widths of the narrowest features becomes stronger.  相似文献   

7.
Coherent control of bound state processes via the interfering overlapping resonance scenario [Christopher et al., J. Chem. Phys. 123, 064313 (2006)] is developed to control intramolecular vibrational redistribution (IVR). The approach is applied to the flow of population between bonds in a model of chaotic OCS vibrational dynamics, showing the ability to significantly alter the extent and rate of IVR by varying quantum interference contributions.  相似文献   

8.
Intramolecular vibrational energy redistribution (IVR) of the NH2 symmetric and asymmetric stretching vibrations of jet-cooled aniline has been investigated by picosecond time-resolved IR-UV pump-probe spectroscopy. A picosecond IR laser pulse excited the NH2 symmetric or asymmetric stretching vibration of aniline in the electronic ground state and the subsequent time evolutions of the excited level as well as redistributed levels were observed by a picosecond UV pulse. The IVR lifetimes for symmetric and asymmetric stretches were obtained to be 18 and 34 ps, respectively. In addition, we obtained the direct evidence that IVR proceeds via two-step bath states; that is, the NH2 stretch energy first flows into the doorway state and the energy is further dissipated into dense bath states. The rate constants of the second step were estimated to be comparable to or slower than those of the first step IVR. The relaxation behavior was compared with that of IVR of the OH stretching vibration of phenol [Y. Yamada, T. Ebata, M. Kayano, and M. Mikami J. Chem. Phys. 120, 7400 (2004)]. We found that the second step IVR process of aniline is much slower than that of phenol, suggesting a large difference of the "doorway state increasing the dense bath states" anharmonic coupling strength between the two molecules. We also observed IVR of the CH stretching vibrations, which showed much faster IVR behavior than that of the NH2 stretches. The fast relaxation is described by the interference effect, which is caused by the coherent excitation of the quasistationary states.  相似文献   

9.
The low-resolution (resolution: 0.6 nm) fluorescence spectra of fluorobenzene derivatives, o-, m- and p-fluorotoluene (o-, m- and p-FT) were observed to investigate intramolecular vibrational energy redistribution (IVR) under controlled electron impact. The o- and m-FT spectra mainly consisted of unstructured emission from optically inactive states (bath modes) populated through IVR. The p-FT spectrum consisted of structured emission from optically active states and unstructured emission. The high-resolution (resolution: 0.15 nm) fluorescence spectrum of p-FT was measured to estimate the fraction of the structured emission intensity to the total emission intensity. The IVR rate of p-FT under electron impact excitation was faster than that under laser excitation. The fraction did not depend on the incident energy of electrons from 20 to 200 eV, and thus the IVR acceleration is not attributable to breakdown of the Born approximation.  相似文献   

10.
We have observed the $ {\tilde{\text{A}}}^{1} {\text{A}}_{\text{u}} \leftarrow {\tilde{\text{X}}}^{ 1} {\text{A}}_{\text{g}} $ fluorescence excitation spectra of jet-cooled oxalyl halides, (COR)2, where R = F, Cl, and compared them with corresponding gas-phase absorption spectra obtained earlier. As a result, we have found some peculiarities of the excited state dynamics of the molecules under study: high effective fluorescence for oxalyl fluoride molecules excited to the single vibronic levels of b g symmetry and high efficiency of radiationless transitions for molecules excited to the single vibronic levels of a g symmetry. For oxalyl chloride, it has been found very intensive 7 0 2 8 1 0 (but not 8 0 1 or 8 1 1 ) hot transition. These results are compared with data for glyoxal, (COH)2, obtained earlier.  相似文献   

11.
We report a femtosecond time-resolved photoelectron spectroscopy (TRPES) investigation of internal conversion in the first two excited singlet electronic states of styrene. We find that radiationless decay through an S(1)/S(0) conical intersection occurs on a timescale of ~4 ps following direct excitation to S(1) with 0.6 eV excess energy, but that the same process is significantly slower (~20 ps) if it follows internal conversion from S(2) to S(1) after excitation to S(2) with 0.3 eV excess energy (0.9 eV excess energy in S(1)).  相似文献   

12.
The present paper is devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) in HFCO initiated by an excitation of the out-of-plane bending vibration [nnu(6)=2,4,6,...,18,20]. Using a full six-dimensional ab initio potential energy, the multiconfiguration time-dependent Hartree (MCTDH) method was exploited to propagate the corresponding six-dimensional wave packets. This study emphasizes the stability of highly excited states of the out-of-plane bending mode which exist even above the dissociation threshold. More strikingly, the structure of the IVR during the first step of the dynamics is very stable for initial excitations ranging from 2nu(6) to 20nu(6). This latter result is consistent with the analysis of the eigenstates obtained, up to 10nu(6), with the aid of the Davidson algorithm in a foregoing paper [Iung and Ribeiro, J. Chem. Phys. 121, 174105 (2005)]. The present study can be considered as complementary to this previous investigation. This paper also shows how MCTDH can be used to predict the dynamical behavior of a strongly excited system and to determine the energies of the corresponding highly excited states.  相似文献   

13.
The four-dimensional model Hamiltonian of Wang and Perry [J. Chem. Phys. 109, 10795 (1998)] is used to compare the approximate adiabatic separation of the torsion and CH stretches in methanol to an exact solution of the same Hamiltonian. The adiabatic approximation accounts for the pattern of the energy levels in the lowest torsional states, including the inverted tunneling splittings, but does not account for the pattern of systematic two- and four-fold near degeneracies at high torsional excitation. In the adiabatic basis, the nonadiabatic couplings mix the torsional and vibrational degrees of freedom and hence are a source for intramolecular vibrational redistribution (IVR). These IVR matrix elements are found to decrease by only a factor of 2 or 3 with each higher coupling order, in agreement with the results of Pearman and Gruebele [Z. Phys. Chem. Munich 214, 1439 (2000)]. This gentle scaling behavior, which contrasts with a steeper falloff with coupling order in more rigid molecules, points to a more important role for direct high-order couplings in torsional molecules. In this model, the scaling behavior derives from a single coupling term that is low order in the torsional angular momentum in combination with one-dimensional torsional functions that include contributions from many torsional angular momenta.  相似文献   

14.
《Chemical physics letters》1986,126(6):487-494
Some universal characteristics are discussed of the decay lifetimes and fluorescence quantum yields from the S1 manifold of large molecules, which originate from the coupling between intrastate vibrational energy redistribution and interstate electronic relaxation. The time-resolved total fluorescence decay from the S1 state of jet-cooled 9-cyanoanthracene exhibits non-exponential decay in the energy range Ev= 1200–1740 cm−1 above the S1 origin, which does not originate from dephasing but rather manifests the effects of intrastate intermediate level structure for vibrational energy redistribution on intersystem crossing.  相似文献   

15.
Ultrafast luminescence spectroscopy has been undertaken on three iridium cored phosphorescent complexes, with the Ir(ppy)3 molecule being compared with two Ir(ppy)3 cored dendrimers. Energy dissipation by intramolecular vibrational redistribution (IVR) and cooling shows as a luminescence decay because it decreases the admixture of singlet character to the emitting triplet state. A larger amount of vibrational energy dissipates by IVR in dendrimer complexes. We have therefore found a methodology of obtaining unambiguous information on the IVR process and show its potential to study IVR rates as a function of vibrational energy.  相似文献   

16.
Dispersed fluorescence spectra of jet-cooled hydrogen-bonded phenols have been observed by excitation of intra- and inter-molecular vibrational levels. The spectra show that vibrational energy redistribution occurs from the excited vibronic level into intermolecular vibrational modes. Energy redistribution within the intermolecular vibrational modes was also found.  相似文献   

17.
We present here high-resolution fluorescence excitation spectra of the 1202 band of pyrimidine in a molecular beam, which provide compelling ev  相似文献   

18.
By use of an analytic potential energy surface developed in this work for nitric acid, the quasi-classical trajectory method was used to simulate intramolecular vibrational energy redistribution (IVR). A method was developed for monitoring the average vibrational energy in the OH (or OD) mode that uses the mean-square displacement of the bond length calculated during the trajectories. This method is effective for both rotating and nonrotating molecules. The calculated IVR time constant for HONO(2) decreases exponentially with increasing excitation energy, is almost independent of rotational temperature, and is in excellent agreement with the experimental determination (Bingemann, D.; Gorman, M. P.; King, A. M.; Crim, F. F. J. Chem.Phys. 1997, 107, 661). In DONO(2), the IVR time constants show more complicated behavior with increasing excitation energy, apparently due to 2:1 Fermi-resonance coupling with lower frequency modes. This effect should be measurable in experiments.  相似文献   

19.
The intramolecular vibrational energy redistribution (IVR) in S(1) deuterated p-difluorobenzene (pDFB-d(4) or -d(4)) has been studied to determine the IVR threshold. For this, the S(1) <-- S(0) fluorescence excitation (FE) spectrum of jet-cooled d(4) was investigated in the 2000-3250 cm(-1) vibronic energy range of the S(1) electronic state, and single vibronic level fluorescence (SVLF) spectra have been acquired by exciting selected levels lying between 750 and 2850 cm(-1) in vibrational energy in the S(1) excited state. Congestion of the dispersed fluorescence in this molecule first appears as the vibrational level energy climbs above 2000 cm(-1). By comparing the SVLF spectra of pDFB-d(4) with those of p-difluorobenzene (pDFB or -h(4)), it is obvious that IVR threshold in -d(4) is localized with a few hundreds cm(-1) lower than that in pDFB. This decrease is entirely due to the increase in vibrational state density due to deuteration.  相似文献   

20.
Intramolecular vibrational energy redistributions of the O-H stretching (nuOH) vibration for the methanol monomer and its water complex, the methanol-water dimer, are investigated by using ab initio full-dimensional classical trajectory calculations. For the methanol monomer, in the high-energy regime of the 5nuOH overtone, the time dependence of the normal-mode energies indicates that energy flowed from the initial excited O-H stretching mode to the C-H stretching mode. This result confirms the experimental observation of energy redistribution between the O-H and C-H stretching vibrations [L. Lubich et al., Faraday Discuss. 102, 167 (1995)]. Furthermore, a lot of dynamical information in the time domain is contained in the power spectra, whose density is given by the Fourier transformation of the total momentum obtained from trajectory calculations. For the methanol-water hydrogen-bonded complex, at the high-energy level of the 5nuOH overtone, the calculated power spectrum shows considerable splitting and broadening, indicating significant energy redistribution through strong coupling between the O-H stretching vibration and other vibrations. It is thus clear that the A-H...B hydrogen-bond formation facilitates energy redistribution subsequent to the vibrational excitation of the hydrogen-bonded A-H stretching mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号