首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A classical result states that every lower bounded superharmonic function on ${\mathbb{R}^{2}}$ is constant. In this paper the following (stronger) one-circle version is proven. If ${f : \mathbb{R}^{2} \to (-\infty,\infty]}$ is lower semicontinuous, lim inf|x|→∞ f (x)/ ln |x| ≥ 0, and, for every ${x \in \mathbb{R}^{2}}$ , ${1/(2\pi) \int_0^{2\pi} f(x + r(x)e^{it}) \, dt \le f(x)}$ , where ${r : \mathbb{R}^{2} \to (0,\infty)}$ is continuous, ${{\rm sup}_{x \in \mathbb{R}^{2}} (r(x) - |x|) < \infty},$ , and ${{\rm inf}_{x \in \mathbb{R}^{2}} (r(x)-|x|)=-\infty}$ , then f is constant. Moreover, it is shown that, assuming rc| · | + M on ${\mathbb{R}^d}$ , d ≤ 2, and taking averages on ${\{y \in \mathbb{R}^{d} : |y-x| \le r(x)\}}$ , such a result of Liouville type holds for supermedian functions if and only if cc 0, where c 0 = 1, if d = 2, whereas 2.50 < c 0 < 2.51, if d = 1.  相似文献   

2.
The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a ${Y\in K}$ such that ${X\subseteq Y}$ and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an ${\mathbb {R}}$ –complete measurable cardinal, then the real core model ${K(\mathbb {R})}$ is a “very good approximation” to the universe of sets V; that is, ${K(\mathbb {R})}$ and V have exactly the same sets of reals and for any set of ordinals X with ${|{X}|\ge\Theta}$ , there is a ${Y\in K(\mathbb {R})}$ such that ${X\subseteq Y}$ and |X| = |Y|. Here ${\mathbb {R}}$ is the set of reals and ${\Theta}$ is the supremum of the ordinals which are the surjective image of ${\mathbb {R}}$ .  相似文献   

3.
4.
A residual existence theorem for linear equations   总被引:1,自引:0,他引:1  
A residual existence theorem for linear equations is proved: if ${A \in \mathbb{R}^{m\times n}}$ , ${b \in \mathbb{R}^{m}}$ and if X is a finite subset of ${\mathbb{R}^{n}}$ satisfying ${{\rm max}_{x \in X}p^T(Ax-b) \geq 0}$ for each ${p \in \mathbb{R}^{m}}$ , then the system of linear equations Axb has a solution in the convex hull of X. An application of this result to unique solvability of the absolute value equation Ax + B|x| = b is given.  相似文献   

5.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

6.
7.
Let ${\vartheta}$ be a measure on the polydisc ${\mathbb{D}^n}$ which is the product of n regular Borel probability measures so that ${\vartheta([r,1)^n\times\mathbb{T}^n) >0 }$ for all 0 < r < 1. The Bergman space ${A^2_{\vartheta}}$ consists of all holomorphic functions that are square integrable with respect to ${\vartheta}$ . In one dimension, it is well known that if f is continuous on the closed disc ${\overline{\mathbb{D}}}$ , then the Hankel operator H f is compact on ${A^2_\vartheta}$ . In this paper we show that for n ≥ 2 and f a continuous function on ${{\overline{\mathbb{D}}}^n}$ , H f is compact on ${A^2_\vartheta}$ if and only if there is a decomposition f = h + g, where h belongs to ${A^2_\vartheta}$ and ${\lim_{z\to\partial\mathbb{D}^n}g(z)=0}$ .  相似文献   

8.
We find the solutions ${f,g,h \colon G \to X,\,\varphi \colon G \to \mathbb{K}}$ of each of the functional equation $$\sum\limits_{\lambda \in K} f(x + \lambda y) = |K| \varphi (y) g(x) + |K|h(y), \quad x, y \in G$$ , where (G, + ) is an abelian group, K is a finite, abelian subgroup of the automorphism group of GX is a linear space over the field ${\mathbb{K} \in \{ \mathbb{R},\mathbb{C}\}}$ .  相似文献   

9.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

10.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

11.
12.
We consider the Markov chain ${\{X_n^x\}_{n=0}^\infty}$ on ${\mathbb{R}^d}$ defined by the stochastic recursion ${X_{n}^{x}= \psi_{\theta_{n}} (X_{n-1}^{x})}$ , starting at ${x\in\mathbb{R}^d}$ , where ?? 1, ?? 2, . . . are i.i.d. random variables taking their values in a metric space ${(\Theta, \mathfrak{r})}$ , and ${\psi_{\theta_{n}} :\mathbb{R}^d\mapsto\mathbb{R}^d}$ are Lipschitz maps. Assume that the Markov chain has a unique stationary measure ??. Under appropriate assumptions on ${\psi_{\theta_n}}$ , we will show that the measure ?? has a heavy tail with the exponent ???>?0 i.e. ${\nu(\{x\in\mathbb{R}^d: |x| > t\})\asymp t^{-\alpha}}$ . Using this result we show that properly normalized Birkhoff sums ${S_n^x=\sum_{k=1}^n X_k^x}$ , converge in law to an ??-stable law for ${\alpha\in(0, 2]}$ .  相似文献   

13.
Let X be a finitistic space having the mod 2 cohomology algebra of the product of two projective spaces. We study free involutions on X and determine the possible mod 2 cohomology algebra of orbit space of any free involution, using the Leray spectral sequence associated to the Borel fibration ${X \hookrightarrow X_{\mathbb{Z}_2} \longrightarrow B_{\mathbb{Z}_2}}$ . We also give an application of our result to show that if X has the mod 2 cohomology algebra of the product of two real projective spaces (respectively, complex projective spaces), then there does not exist any ${\mathbb{Z}_2}$ -equivariant map from ${\mathbb{S}^k \to X}$ for k ≥ 2 (respectively, k ≥ 3), where ${\mathbb{S}^k}$ is equipped with the antipodal involution.  相似文献   

14.
We consider the stochastic recursion ${X_{n+1} = M_{n+1}X_{n} + Q_{n+1}, (n \in \mathbb{N})}$ , where ${Q_n, X_n \in \mathbb{R}^d }$ , M n are similarities of the Euclidean space ${ \mathbb{R}^d }$ and (Q n , M n ) are i.i.d. We study asymptotic properties at infinity of the invariant measure for the Markov chain X n under assumption ${\mathbb{E}{[\log|M|]}=0}$ i.e. in the so called critical case.  相似文献   

15.
Let ${X= \{X_t, t \ge 0\}}$ be a continuous time random walk in an environment of i.i.d. random conductances ${\{\mu_e \in [1,\infty), e \in E_d\}}$ , where E d is the set of nonoriented nearest neighbor bonds on the Euclidean lattice ${\mathbb{Z}^d}$ and d ≥ 3. Let ${{\rm R} = \{x \in \mathbb{Z}^d: X_t = x {\rm \,for\, some}\,t \ge 0\}}$ be the range of X. It is proved that, for almost every realization of the environment, dimH R = dimP R = 2 almost surely, where dimH and dimP denote, respectively, the discrete Hausdorff and packing dimension. Furthermore, given any set ${A \subseteq \mathbb{Z}^d}$ , a criterion for A to be hit by X t for arbitrarily large t > 0 is given in terms of dimH A. Similar results for Bouchoud’s trap model in ${\mathbb{Z}^d}$ (d ≥ 3) are also proven.  相似文献   

16.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

17.
Let Σ be a finite set of cardinality k > 0, let $\mathbb{A}$ be a finite or infinite set of indices, and let $\mathcal{F} \subseteq \Sigma ^\mathbb{A}$ be a subset consisting of finitely supported families. A function $f:\Sigma ^\mathbb{A} \to \Sigma$ is referred to as an $\mathbb{A}$ -quasigroup (if $\left| \mathbb{A} \right| = n$ , then an n-ary quasigroup) of order k if $f\left( {\bar y} \right) \ne f\left( {\bar z} \right)$ for any ordered families $\bar y$ and $\bar z$ that differ at exactly one position. It is proved that an $\mathbb{A}$ -quasigroup f of order 4 is reducible (representable as a superposition) or semilinear on every coset of $\mathcal{F}$ . It is shown that the quasigroups defined on Σ?, where ? are positive integers, generate Lebesgue nonmeasurable subsets of the interval [0, 1].  相似文献   

18.
We consider the following perturbed version of quasilinear Schrödinger equation $$\begin{array}{lll}-\varepsilon^2\Delta u +V(x)u-\varepsilon^2\Delta (u^2)u=h(x,u)u+K(x)|u|^{22^*-2}u\end{array}$$ in ${\mathbb{R}^N}$ , where N ≥ 3, 22* = 4N/(N ? 2), V(x) is a nonnegative potential, and K(x) is a bounded positive function. Using minimax methods, we show that this equation has at least one positive solution provided that ${\varepsilon \leq \mathcal{E}}$ ; for any ${m\in\mathbb{N}}$ , it has m pairs of solutions if ${\varepsilon \leq \mathcal{E}_m}$ , where ${\mathcal{E}}$ and ${\mathcal{E}_m}$ are sufficiently small positive numbers. Moreover, these solutions ${u_\varepsilon \to 0}$ in ${H^1(\mathbb{R}^N)}$ as ${\varepsilon \to 0}$ .  相似文献   

19.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

20.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号