首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorine atoms are selectively attached to the sidewall of the outer shell of DWNTs without disrupting the double-layered morphology; the stoichiometry of the fluorinated DWNTs is CF(0.30).  相似文献   

2.
In a sample produced by catalytic chemical vapor deposition (CCVD), the structure of the carbon nanotubes (diameter and helicity) which governs their electronic properties, is determined by electron diffraction. We found that most of the smallest bundles are constituted of identical double-walled carbon nanotubes.  相似文献   

3.
Our study indicates that it is possible to move single-stranded DNA (ssDNA) molecules into and out of double-walled carbon nanotubes by utilizing DC electric fields with different polarities.  相似文献   

4.
Synthesis of clean double-walled carbon nanotubes by a catalytic chemical vapour deposition (CCVD) method is reported; the catalyst is a Mg(1 - x)Co(x)O solid solution containing additions of Mo oxide; this MgO-based catalyst can be easily removed, leading to gram-scale amounts of clean carbon nanotubes, 77% of which are double-walled carbon nanotubes.  相似文献   

5.
We report the synthesis and characterization for the first examples of monolithic low-density carbon aerogel (CA) nanocomposites containing double-walled carbon nanotubes. The CA nancomposites were prepared by the sol-gel polymerization of resorcinol and formaldehyde in an aqueous surfactant-stabilized suspension of double-walled carbon nanotubes (DWNTs). The composite hydrogels were then dried with supercritical CO 2 and subsequently carbonized under an inert atmosphere to yield monolithic CA structures containing uniform dispersions of DWNTs. The microstructures and electrical conductivities of these CA nanocomposites were evaluated for different DWNT loadings. These materials exhibited high BET surface areas (>500 m (2)/g) and enhanced electrical conductivities relative to pristine CAs. The details of these results are discussed in comparison with theory and literature.  相似文献   

6.
The capacitive behaviors of high-purity double-walled carbon nanotubes (DWNTs) were investigated before and after oxidation using nitric acid (HNO3). The electrodes prepared from the HNO3-oxidized DWNTs have exhibited higher capacitances than the pristine nanotube electrode in both aqueous and non-aqueous systems, despite the deterioration of their specific surface area after HNO3 oxidation. The superiority of the HNO3-oxidized DWNTs in capacitance properties is caused by the variations of surface wettability and the interstitial pore structure of nanotube bundles, which result from the introduction of polar oxygen functional groups onto the nanotube surface by HNO3 oxidation.  相似文献   

7.
Here, we carried out Raman study on chemically doped single wall carbon nanotube (SWNT)/double-walled carbon nanotube (DWNT) mixed bucky-papers. Their highly different Raman responses (e.g., a large upshift of tangential mode of SWNT and no large changes in the frequencies of tangential mode assigned to the outer tubes of the DWNT) upon doping with the sulfuric acid could be used as a qualitative indicator of the purity of the DWNT samples with the concentration of its SWNTs contents.  相似文献   

8.
DWNT buckypaper adsorbed much more hydrogen than did a SWNT bundle. XRD measurements and GCMC simulation results suggested that the DWNT bundle is loosely packed into an hexagonal array with interstitial pores which can efficiently adsorb H2 molecules.  相似文献   

9.
10.
Carbon nanotubes show promising prospects for applications ranging from molecular electronics to ultrasensitive biosensors. An important aspect to understanding carbon nanotube properties is their interactions with biomolecules such as peptides and proteins, as these interactions are important in our understanding of nanotube interactions with the environment, their use in cellular systems, as well as their interface with biological materials for medical and diagnostic applications. Here we report the sequence and conformational requirements of peptides for high-affinity binding to single-walled carbon nanotubes (SWNTs). A new motif, X(1)THX(2)X(3)PWTX(4), where X(1) is G or H, X(2) is H or D or null, X(3) is null or R, and X4 is null or K, was identified from two classes of phage-displayed peptide libraries. The high affinity binding of the motif to SWNTs required constrained conformations which were achieved through either the extension of the amino acid sequence (e.g., LLADTTHHRPWT) or the addition of a constrained disulfide bond (e.g., CGHPWTKC). This motif shows specific high-affinity to the currently studied SWNTs, compared to previously reported peptides. The conformations of the identified peptides in complex with SWNTs were also characterized with a variety of biophysical methodologies including CD, fluorescence, NMR spectroscopy, and molecular modeling.  相似文献   

11.
Ion selectivity using membranes comprising functionalized carbon nanotubes   总被引:1,自引:0,他引:1  
In this paper, we use applied mathematical modelling to investigate the transportation of ions inside functionalized carbon nanotubes, and in particular the transport of sodium and chloride ions. This problem is important for future ion transport and detection, and also arises in ion diffusion inside complex biological channels. Some important future applications of the system for a solvent are ultra-sensitive biosensors and electrolytes for alkaline fuel cells. We model the interactions between the ions and the nanotube by the Lennard-Jones potential and the interactions between the ions and the functional group by the Coulomb potential, while the atomic interactions between the ions is modeled by both the Lennard-Jones and Coulomb potentials. We further assume that the carbon atoms, the charge of the functional group, and the ions are all evenly distributed on the surface of the nanotube, the entry of the nanotube and the envisaged ionic surface, respectively, so that we may use the continuous approximation to calculate the corresponding potential energies. For nanotubes located in salt water, the molecular effects arising from the bulk solution can be extracted from MD simulation studies. Assuming that the solvent is absent, we first determine the acceptance radii for the sodium or chloride ion entering the nanotube, both with and without a functional group, and we then determine the equilibrium positions of two identical ions inside the nanotube. Finally, the transportation time of an intruding ion through the nanotube is deduced from the total axial force. In the presence of a solvent, the molecular effects arising from the bulk solution are examined and we establish that the presence of a solvent stabilizes the selectivity of the ions.  相似文献   

12.
We report the synthesis of high-quality double-walled carbon nanotubes without defects by catalytic decomposition of alcohol over an Fe-Mo/Al2O3 catalyst; the synthesized DWNTs have outer diameters in the range of 1.52-3.54 nm and an average interlayer distance of 0.38 nm between graphene layers.  相似文献   

13.
Double-walled carbon nanotubes could be synthesized by arc-discharge method using ball-milling mixtures of iron, cobalt, nickel and sulfide as catalysts. Structures of these carbon nanotubes were characterized by TEM, HRTEM and Raman spectroscopy. Also the lithium insertion properties were examined. The results showed that the irreversible capacity of the double-walled carbon nanotube lithium ion batteries is high, which is considered to be related to the formation of SEI on the surface of the electrodes in the process of electrochemistry reaction. Published in Russian in Elektrokhimiya, 2008, vol. 44, No. 11, pp. 1333–1336. The text was submitted by the authors in English.  相似文献   

14.
Moderate acid treatment of double-walled carbon nanotubes (DWCNTs) has given rise to two new experimentally observed second-order double resonant Raman scattering frequencies centered at 1901 cm(-1) and 1942 cm(-1), in the highly dispersive LOLA region. These LOLA overtones and combination modes have been predicted by double resonance theory for two phonons associated with the K- and Gamma-points, respectively.  相似文献   

15.
Electrochemical electrodes incorporating double- and single-walled carbon nanotubes (CNTs) were fabricated on cysteamine modified flat gold substrates. Through covalent coupling of the amine end groups with carboxyl functionalized CNTs, a dense forest of vertically aligned CNTs was produced. To these a 30 nm thick insulating polystyrene layer was spin coated, resulting in exposure of the uppermost carbon nanotube ends. The electrochemical performance of each electrode was then determined using the redox probe ruthenium hexaamine. Once surrounded by polymer, the double-walled CNTs (DWCNTs) showed an improved electron transfer rate, compared to the single-walled electrode. This improvement was attributed to the protection of the electronic properties of the inner wall of the DWCNT during the chemical modification and suggests that DWCNTs may offer a useful alternative to SWCNTs in future electrochemical sensors and biosensors.  相似文献   

16.
Double-walled carbon nanotubes (DWCNTs) with outer metallic (M) or semiconducting (S) shells were sorted by density-gradient ultracentrifugation and examined by Raman spectroscopy and in situ Raman spectroelectrochemistry. The combination of sorting and the selection of appropriate laser excitation energies allowed the disentanglement of the effects of different variations of the electronic type (M or S) of the inner and outer tubes in DWCNTs on the doping behavior and charge transfer between the inner and outer walls. Charge transfer from the outer tube to the inner tube occurs only if the electronic states of the outer tube are filled with electrons or holes, and if these filled states are higher in energy than those of the inner tube. Therefore, each combination of inner and outer tube (i.e., inner@outer: M@M, M@S, S@M, and S@S) exhibits a distinct behavior. The potential needed to observe the effects of charge transfer between the inner and outer tubes is found to increase in the following order: M@M < S@M < M@S < S@S.  相似文献   

17.
18.
Double-walled carbon nanotubes (DWCNTs) were synthesized by catalytic chemical vapor deposition using Fe-Mo/MgO as a catalyst at 1000 degrees C under the mixture of methane and hydrogen gas. The nanotubes were purified by acid but were not damaged. Thermogravimetric analysis revealed the purity of the tubes to be about 90%. The high-resolution transmission electron microscopy image showed that DWCNTs have inner tube diameters of 1.4-2.6 nm and outer tube diameters of 2.3-3.4 nm. We observed radial breathing modes in Raman spectra, which are related to the diameter of inner nanotubes. The purified DWCNTs were mixed with organic vehicles and glass frit, and then they were screen-printed on glass substrate coated with indium tin oxide. The field emission properties of the screen-printed DWCNT films were examined by varying the amount of glass frit ingredient within the DWCNT paste. The results showed that DWCNT emitters had good emission properties such as turn-on field of 1.33-1.78 V/microm and high brightness. When the applied anode voltage was gradually increased, current density and brightness became saturated. We also observed DWCNTs adsorbed on the anode plate; they were DWCNTs peeled off from the cathode plate for field emission measurement.  相似文献   

19.
Calcination at 900-1000 degrees C for 8-12 h of an Fe/MgO catalyst prepared by impregnation was found to result in a uniform MgFe2O4/MgO solid solution that showed a successful settling of well-dispersed iron species into the MgO lattice. During methane reduction, many iron-containing particles with a diameter of about 4 nm were formed on the catalyst surface to provide numerous active sites for the growth of single- and double-walled carbon nanotubes. There was a significant improvement of the Fe/MgO catalyst that resulted in a high yield of impurity-free nanotubes. Using C2H4 cracking at 600 degrees C and transmission electron microscope observations, the Fe species distribution in the catalysts and microscope images of nanotube growth were described in detail. H2 reduction of the calcined Fe/MgO catalyst was found to cause the formation of iron layers on the catalyst surface, which resulted in the growth of only carbon layers. The results are useful for understanding changes in the metal species distribution in the catalysts and the nanotube growth mechanism, and they provide a simple method to improve Fe/MgO catalysts.  相似文献   

20.
Pt-Ru supported on carbon nanotubes (CNTs) (single-walled nanotubes, double-walled nanotubes (DWNTs), and multi-walled nanotubes) catalysts are prepared by an ethylene glycol reduction method. Pt-Ru nanoparticles with a diameter of 2-3 nm and narrow particle size distributions are uniformly deposited onto the CNTs. A simple and fast filtration method followed by a hot-press film transfer is employed to prepare the anode catalyst layer on a Nafion membrane. The Pt-Ru/DWNTs catalyst shows the highest specific activity for methanol oxidation reaction in rotating disk electrode experiments and the highest performance as an anode catalyst in direct methanol fuel cell (DMFC) single cell tests. The DMFC single cell with Pt-Ru/DWNTs (50 wt %, 0.34 mg Pt-Ru/cm(2)) produces a 68% enhancement of power density, and at the same time, an 83% reduction of Pt-Ru electrode loading when compared to Pt-Ru/C (40 wt %, 2.0 mg Pt-Ru/cm(2)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号