首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the viewpoint of development of a removal agent for humic substances, we prepared Ti-modified silica gel, SiO2-Ti, from titanium alkoxide and microsized silica gel. The prepared silica agent was investigated in adsorption and photocatalytic degradation of humic substances in water. In these experiments, four humic substances, commercially available Wako humic acid (Wako-HA), Nordic aquatic humic acid (Nordic-HA), Nordic aquatic fulvic acid (Nordic-FA), and Suwannee river fulvic acid (Suwannee-FA), were used, and Freundlich constants (KF and 1/n) and photodegradation rates were evaluated. Wako-HA, which has the highest aromaticity ratio [Ar-OH]/[COOH] and molecular weight, had the highest adsorbability (KF=17.5 (mg/g)(L/mg)(1/n), 1/n=0.67) but the lowest photodegradability (<80%). On the other hand, Suwannee-FA, which has the lowest aromaticity, [Ar-OH]/[COOH] ratio, and molecular weight, afforded lesser adsorbability (KF=7.1 (mg/g)(L/mg)(1/n), 1/n=0.39) but the highest photodegradability (>99%). Nordic-HA and Nordic-FA afforded adsorbabilities similar to that for Suwannee-FA, and medium photodegradabilities between those for Wako-HA and Suwannee-FA. Adsorption and photodegradation capacities of SiO2-Ti were improved with increased Ti content and phosphorescence emission amount, respectively. From XRD analysis, we found that the structure of anatase-type TiO2 features the Ti modifiers of SiO2-Ti. Therefore, humic substance molecules effectively interact with the Ti modifiers and are decomposed by OH radicals generated in situ. We hope that SiO2-Ti will be used as a photodegradation catalyst in water purification plants.  相似文献   

2.
Abstract

Size-exclusion chromatographic (SEC) fractionation and electrophoretic separation of aquatic humic matter samples from a Finnish lake using Sephadex G-75 with 7 M urea solution as eluent and 10% polyacrylamide gel (PAGE) with urea and sodium dodecyl sulphate solution (SDS), respectively, were performed and compared to similar analyses performed on a Russian chernozem soil humic acid sample and Nordic reference fulvic and humic acid samples. The integrated whole of aquatic humic solutes and soil humic acids were found to exhibit similar SEC-PAGE behaviours. Humic matter was not excessively disaggregated by the 7 M urea and hence SEC-PAGE can with confidence be applied as a coarse, initial fractionation procedure or for certain predeterminations of the structural composition.  相似文献   

3.
The significance of this research is the application of thin-layer chromatography (TLC) to fractionate well-characterized aquatic humic materials coupled with the novel evaluation of the trihalomethane formation potential (THMFP) of the fractionated materials. Disinfection by-products such as trihalomethanes (THMs) form when natural water is treated by chlorination. Nordic Aquatic and Suwannee River fulvic and humic acids, obtained from the International Humic Substances Society, were prepared at pH 6 and 9 and fractionated on silica gel plates using a mobile phase consisting of methanol and ethyl acetate (2:1, v:v). Based on retention factor (R(f)) values, three common fractions were identified in all substances examined. Additionally, other fractions were noted that were characteristic of specific humic substances. Each of the three primary fractions derived from Nordic Aquatic fulvic acid at pH 6 demonstrated the potential to contribute to formation of THMs. This research provides data to support the hypothesis that differences in the chemical structure and composition of natural organic matter (NOM) significantly affect the potential to react with chlorine to form THMs.  相似文献   

4.
Humic and fulvic acids from various sources have been shown to give different electropherograms by capillary zone electrophoresis (CZE), depending on the pH of the electrolyte. This CZE work is extended here through investigations involving the titration of humic and fulvic acids with Fe(III) and Cu(II) cations. As increasing amounts of these cations were added to the humic substances (HUS), flocculation of metal-humic complexes occurred. This is believed to be caused by binding of the metal cations with negative carboxyl and phenolic sites on the HUS, resulting in a decrease of the repulsive forces that keep the HUS in a conformation more suitable for water solubility. The flocculated complexes were separated from the supernatant by centrifugation, and the supernatants were characterized as to total organic carbon (TOC) content, molecular weight (MW) using gel permeation chromatography, and average electrophoretic mobility (AEM) using CZE. The extent of flocculation correlated with both TOC and quantitative CZE measurements. The MW of the HUS remaining in solution actually decreased, presumably because of precipitation of larger molecules as they became insoluble because of reactions with the metals. Humic acids showed total precipitation of TOC with both metals at a concentration equivalent to their measured acidity. CZE demonstrated that certain fulvic acid fractions (low molecular weight phenolic acids) remained in solution even at high metal concentrations. In summary, changes in electrophoretic behavior of the soluble HUS could be related to changes in charge-to-mass ratios (charge densities) of both humic and fulvic acids with increasing metal cation concentration (neutralization). The copper treated HUS showed changes in their electrophoretic behavior even at low metal concentrations before flocculation, whereas the iron treated HUS flocculated uniformally over the range of added iron without significant changes in AEM. Thus these changes in CZE patterns illustrate different specific binding sites of the HUS for each metal.  相似文献   

5.
Multivalency iodine (I(7)+/I(-)) doped TiO(2) were prepared via a combination of deposition-precipitation process and hydrothermal treatment. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area, UV-vis diffuse reflectance spectra, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and electric-field-induced surface photovoltage spectroscopy. The electronic structure calculations based on the density functional theory revealed that upon doping, new states that originated from the I atom of the IO(4) group are observed near the conduction-band bottom region of TiO(2), and the excitation from the valence band of TiO(2) to the surface IO(4-) is responsible for the visible-light response of the I-doped TiO(2). The as-prepared I-doped TiO(2) showed high efficiency for the photocatalytic decomposition of gaseous acetone under visible light irradiation (lambda > 420 nm). A possible mechanism for the photocatalysis on this multivalency iodine (I(7)+/I(-)) doped TiO(2) under visible light was also proposed.  相似文献   

6.
Humic and fulvic acids from various sources have been shown to give different electropherograms by capillary zone electrophoresis (CZE), depending on the pH of the electrolyte. This CZE work is extended here through investigations involving the titration of humic and fulvic acids with Fe(III) and Cu(II) cations. As increasing amounts of these cations were added to the humic substances (HUS), flocculation of metal-humic complexes occurred. This is believed to be caused by binding of the metal cations with negative carboxyl and phenolic sites on the HUS, resulting in a decrease of the repulsive forces that keep the HUS in a conformation more suitable for water solubility. The flocculated complexes were separated from the supernatant by centrifugation, and the supernatants were characterized as to total organic carbon (TOC) content, molecular weight (MW) using gel permeation chromatography, and average electrophoretic mobility (AEM) using CZE. The extent of flocculation correlated with both TOC and quantitative CZE measurements. The MW of the HUS remaining in solution actually decreased, presumably because of precipitation of larger molecules as they became insoluble because of reactions with the metals. Humic acids showed total precipitation of TOC with both metals at a concentration equivalent to their measured acidity. CZE demonstrated that certain fulvic acid fractions (low molecular weight phenolic acids) remained in solution even at high metal concentrations. In summary, changes in electrophoretic behavior of the soluble HUS could be related to changes in charge-to-mass ratios (charge densities) of both humic and fulvic acids with increasing metal cation concentration (neutralization). The copper treated HUS showed changes in their electrophoretic behavior even at low metal concentrations before flocculation, whereas the iron treated HUS flocculated uniformally over the range of added iron without significant changes in AEM. Thus these changes in CZE patterns illustrate different specific binding sites of the HUS for each metal.  相似文献   

7.
We report that rates of I(2)(g) emissions, measured via cavity ring-down spectroscopy, during the heterogeneous ozonation of interfacial iodide: I(-)(surface, s) + O(3)(g) + H(+)(s) →→ I(2)(g), are enhanced several-fold, whereas those of IO·(g) are unaffected, by the presence of undissociated alkanoic acids on water. The amphiphilic weak carboxylic acids appear to promote I(2)(g) emissions by supplying the requisite interfacial protons H(+)(s) more efficiently than water itself, at pH values representative of submicrometer marine aerosol particles. We infer that the organic acids coating aerosol particles ejected from ocean's topmost films should enhance I(2)(g) production in marine boundary layers.  相似文献   

8.
Humic substances are precursors of carcinogenic trihalomethanes (THMs) formed during disinfection by chlorination in water treatment processes. In an effort to understand the relationship between trihalomethane formation potential (THMFP) and physicochemical properties of humic substances, UV-visible absorbance, fluorescence in emission and synchronous scan modes, and NMR spectra were measured for several aquatic fulvic and humic acids. For comparison, a soil fulvic acid was also examined using these methods. The feasibility of the gradient modified spin-echo (GOSE) NMR experiment to selectively measure singlet resonances arising from isolated protons was examined. In addition, diffusion coefficients were measured for DMSO solutions of the fulvic acids using BPPLED and GOSE-edited pulse sequences. Although none of the methods tested produced results that correlated with THMFP, the GOSE intensities determined for different regions of the NMR spectra did reflect the relative abundance of different types of functional groups produced by lignin oxidation. In addition, the GOSE-edited diffusion results suggest that the isolated protons, those most reactive to chlorination, are more likely contained in the larger molecular weight fractions of fulvic acids.  相似文献   

9.
Chen JH  Wang KE  Jiang SJ 《Electrophoresis》2007,28(22):4227-4232
A CE-inductively coupled plasma mass spectrometric (CE-ICP-MS) method for iodine and bromine speciation analysis is described. Samples containing ionic iodine (I(-) and IO(3)(-)) and bromine (Br(-) and BrO(3)(-)) species are subjected to electrophoretic separation before injection into the microconcentric nebulizer (CEI-100). The separation has been achieved in a 50 cm length x 75 microm id fused-silica capillary. The electrophoretic buffer used is 10 mmol/L Tris (pH 8.0), while the applied voltage is set at -8 kV. Detection limits are 1 and 20-50 ng/mL for various I and Br compounds, respectively, based on peak height. The RSD of the peak areas for seven injections of 0.1 microg/mL I(-), IO(3)(-) and 1 microg/mL Br(-), BrO(3)(-) mixture is in the range of 3-5%. This method has been applied to determine various iodine and bromine species in NIST SRM 1573a Tomato Leaves reference material and a salt and seaweed samples obtained locally. A microwave-assisted extraction method is used for the extraction of these compounds. Over 87% of the total iodine and 83% of the total bromine are extracted using a 10% m/v tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 10 min. The spike recoveries are in the range of 94-105% for all the determinations. The major species of iodine and bromine in tomato leaves, salt, and seaweed are Br(-), IO(3)(-), I(-), and Br(-), respectively.  相似文献   

10.
(The d.c. polarographic determination of traces of humic substances in potable waters) The inhibiting effect of a tri-n-butylphosphate layer adsorbed at the mercury drop on the polarographic wave of copper(II) is reduced by humic substances. This effect can be utilized to determine humic substances in the range 0.05–1 mg l-1. The standard substance used was isolated from peaty water. Humic and fulvic acids are not differentiated but amino acids, peptides and polyhydroxy compounds do not interfere.  相似文献   

11.
Summary Humic and fulvic acids are quantitatively coprecipitated in a stream (0.5l/min) of sample solution with indium hydroxide at pH 8 and continuously floated with the aid of sodium dodecyl sulphate and numerous tiny nitrogen bubbles. The precipitate and foam on the surface of the solution are collected by suction and the latter is ruptured with ethanol. By these procedures the original sample volume is reduced to less than 1/100. After dissolving the precipitate in 2 mol/l hydrochloric acid, the solution (pH 0.5) is introduced onto the pulverized XAD-2 resin to collect humic and fulvic acids, leaving indium ions in the solution. The humic substances are desorbed with 0.1 mol/l sodium hydroxide solution. The recoveries of humic and fulvic acids are ca. 95% for coprecipitation-flotation, >90% for sorption and 80–90% for desorption.  相似文献   

12.
Iodine is a biologically important trace element. Its behaviour in the environment and in human metabolism is determined by the type of iodine species which takes part in chemical reactions. Knowledge of their concentrations is necessary to understand and describe the iodine reaction paths. A separation procedure is proposed for quick determination of common forms of iodine-iodide, iodate ions, molecular iodine and organoiodine (in the form of CH(3)I). The procedure consists of sequential sorption by passing the sample solution first through a solid-phase extraction cartridge to separate I(2) and CH(3)I from IO(3)(-) and I(-) then through an anion-exchange resin in a cartridge to retain the latter two species. Each loaded cartridge is eluted to separate the sorbed pair of species. Concentration determination of the resulting four solutions can be performed by standard methods, e.g. by spectrophotometry, tracer counting or with ion-selective electrodes.  相似文献   

13.
The influence of Pb(II) ions on the properties of the free radicals formed in humic acids and fulvic acids was investigated by electron paramagnetic resonance spectroscopy. It is shown that, in both humic acid and fulvic acid, Pb(II) ions shift the radical formation equilibrium by increasing the concentration of stable radicals. Moreover, in both humic acid and fulvic acid, Pb(II) ions cause a characteristic lowering of the stable radicals' g-values to g = 2.0010, which is below the free electron g-value. This effect is unique for Pb ions and is not observed with other dications. Gallic acid (3,4,5-trihydroxybenzoic acid) and tannic acid are shown to be appropriate models for the free radical properties, i.e., g-values, Pb effect, pH dependence, of humic and fulvic acid, respectively. On the basis of density functional theory calculations for the model system (gallic acid-Pb), the observed characteristic g-value reduction upon Pb binding is attributed to the delocalization of the unpaired spin density onto the Pb atom. The present data reveal a novel environmental role of Pb(II) ions on the formation and stabilization of free radicals in natural organic matter.  相似文献   

14.
The combination of CH(3)CN solutions of [N(CH(3))(4)][F] and a mixture of cis- and trans-[N(CH(3))(4)][IO(2)F(4)] produces the novel trans-IO(2)F(5)(2)(-) anion. Under the given conditions, only the trans-IO(2)F(4)(-) anion acts as a fluoride ion acceptor, thus allowing the separation of isomerically pure, soluble cis-IO(2)F(4)(-) from insoluble trans-IO(2)F(5)(2)(-). The trans-IO(2)F(5)(2)(-) and cis-IO(2)F(4)(-) anions were characterized by infrared and Raman spectroscopy and theoretical calculations at the LDFT and HF levels of theory. The trans-IO(2)F(5)(2)(-) anion has a pentagonal-bipyramidal geometry with the two oxygen atoms occupying the axial positions. It represents the first example of a heptacoordinated main group AO(2)X(5) species and completes the series of pentagonal-bipyramidal iodine fluoride and oxide fluoride species. The geometries of the pentagonal-bipyramidal series IO(2)F(5)(2)(-), IOF(5)(2)(-), IF(5)(2)(-), IOF(6)(-), IF(6)(-), and IF(7) and the corresponding octahedral series IO(2)F(4)(-), IOF(4)(-), IF(4)(-), IOF(5), IF(5), and IF(6)(+) were calculated by identical methods. It is shown how the ionic charge, the oxidation state of the iodine atom, the coordination number, and the replacement of fluorine ligands by either an oxygen ligand or a free valence electron pair influence the stuctures and bonding of these species.  相似文献   

15.
Gel permeation chromatography (GPC) was applied for recognizing the origin of groundwater humic and fulvic acids. GPC was performed with Fraktogel TSK HW-50 in 0.1 M NaCl, pH 8.5 (0.05 M phosphate buffer), 1 mM EDTA, with 10% by volume methanol added. Humic substances from groundwaters and sediments of four different aquifer systems in Germany were isolated, purified and characterized. Both UV/Vis and fluorescence detection were applied. UV/Vis detection was found to be more powerful in identifying differences between the various humic and fulvic acids. The four aquifer systems investigated (“Gorleben”, “Fuhrberg”, “Franconian Albvorland” and “Munich”) differed from one another with respect to hydrological and geochemical conditions. The results showed that the GPC-elution behavior reflects the geochemical environment and origin (source material and generation process) of aquatic humic and fulvic acids.  相似文献   

16.
We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated. Figure Addition of Fe(III) ions or EDTA to a solution containing fulvic acid (FA) results in a distinct change in the electropherogram pattern, which reflects the conformational change of FA: this forms the basis for the characterization of humic substances in river water samples  相似文献   

17.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and laser desorption/ionization (LDI-)TOFMS have been used to characterize Suwannee River humic substances, obtained from the International Humic Substances Society (IHSS), and Armadale soil fulvic acid (ASFA). An array of MALDI matrices were tested for use with humic substances, including alpha-cyano-4-hydroxycinammic acid (CHCA), 2-(4-hydroxyphenylazo)benzoic acid (HABA), 2,5-dihydroxybenzoic acid (DHBA), sinapinic acid, dithranol and norharmane. DHBA yielded the best results, exhibiting superior ionization efficiency, low noise, broad applicability to the analytes of interest, and most importantly producing an abundance of high mass ions, the highest observed being m/z 1848. A number of sample preparation modes were investigated; the overlayer method improved sample/matrix homogeneity and hence shot-to-shot reproducibility. The choice of the matrix, mass ratio of analyte to matrix, and the sample preparation protocol, were found to be the most critical factors governing the quality of the mass spectra. Matrix suppression was greatly enhanced by ensuring good mixing of matrix and analyte in the solid phase, proper optimization of the matrix/analyte ratio, and optimizing delayed extraction to ensure complete matrix-analyte reaction in the plume before ions are moved to the flight tube. A number of common features, in particular specific ions which could not be attributed to the matrices or to contaminants, were present in the spectra of all the humic substances, regardless of origin or operational definition. Additionally, a prominent repeating pattern of peaks separated by 55, 114 and 169 Da was clearly observed in both LDI and MALDI, suggesting that the humic compounds studied here may have quasi-polymeric or oligomeric features.  相似文献   

18.
Radio-tracer experiments have shown that antimony, mercury and zinc interact to form complexes with humic and/or fulvic acids, whose molar masses can be estimated by gel chromatography. Sb(III) and (V) humates are stable in the pH range 7–11, but are largely dissociated below pH 4; humic acid does not reduce Sb(V) to Sb(III) in solution. Mercury forms a strong complex with humic+fulvic acids. Zinc forms complexes with both humic acids and glycine, and the humic acid complex has similar elution behaviour on dextran gel to a fraction from river water equilibrated with65Zn. At least one other form of zinc, in addition to Zn2+, occurs in this river.  相似文献   

19.
The Mezquital Valley in Central Mexico has received wastewater from Mexico City for nearly 100 years. Wastewater brings in organic matter and nutrients but also trace metals. Humic substances, the main components of organic soil matter, are responsible for retaining and regulating the mobility of trace metals in soils. In this study, humic substances were extracted from the soil and separated into distinct fractions (humic acids, fulvic acids and humins). The particle induced X-ray emission (PIXE) technique was applied to determine the metal content in bulk soil as well as in humic acids and fulvic acids not soluble in H3PO4. In order to assess whether the long-term input of organic matter and metals modifies the metal association with these humic substances, parcels irrigated for three time periods (5, 47 and 89 years) were selected for this study. It was observed that metals such as Zn and Cu are mainly associated with the humic acids. Fulvic acids retain mainly Cr while Pb is distributed among humic and fulvic acids. It was also observed that in general, metal retention by humic substances increases with irrigation time. Depth also affects metal association with the humic substances.  相似文献   

20.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号