首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
本文从六种大孔吸附树脂中筛选出HA-2和HA-3二种树脂,这二种树脂对洋地黄类强心甙--地高辛具有较好的吸附性能,测定了吸附树脂的比表面积、孔容及平均孔径,讨论了地高辛溶液的浓度、pH值等诸条件对大孔吸附树脂吸附性能的影响。  相似文献   

2.
大孔吸附剂对洋地黄强心甙吸附性能的研究   总被引:2,自引:0,他引:2  
从7种大孔吸附树脂中筛选出HA-2型和HA-3型2种吸附剂,考察它们对洋地黄强心甙-地高辛具有较好的吸附性能。测定了该2种大孔吸附剂的比表面积、孔容及平均孔径,讨论了地高辛溶液的浓度、pH值等条件对吸附容量和吸附率的影响。  相似文献   

3.
前文已从五种树脂中筛选出对流行性出血热血浆中分子物质具有较好吸附性能的HA型大孔吸附树脂。本文在此基础上,详细研究了HA型大孔吸附树脂的血液相容性及其临床应用功效。  相似文献   

4.
大孔膦酸树脂吸附钇的研究   总被引:6,自引:0,他引:6  
大孔膦酸树脂吸附钇的研究舒增年熊春华(丽水师范专科学校化学系浙江323000)林峰(杭州大学化学系杭州310028)关键词大孔膦酸树脂钇吸附机理中图分类号O614.322本文在HAc-NaAc体系中,研究了树脂吸附钇的性能及其机理,获得了诸多的结果,...  相似文献   

5.
大孔膦酸树脂吸附钴的性能及其机理   总被引:11,自引:1,他引:10  
大孔膦酸树脂吸附钴的性能及其机理熊春华,莫建军(丽水师专化学系,丽水323000)林峰(杭州大学化学系,杭州310028)关键词胰酸树脂,钴,吸附大孔磷酸树脂的合成、结构、某些性能和应用已有报道[1,2],但是在HAc-NaAc体系中吸附金属钻(Ⅱ)...  相似文献   

6.
大孔吸附树脂对绞股蓝皂甙的吸附研究   总被引:12,自引:0,他引:12  
比较了7种大孔吸附树脂对绞股蓝皂甙的吸附性能及机理,通过对吸附树脂的孔径和比表面的研究,得出AASI-2树脂是一种性能优良的吸附剂。  相似文献   

7.
大孔吸附树脂对银杏内酯和白果内酯吸附性能的研究   总被引:15,自引:1,他引:14  
本文比较了AB-8、D4020、NKA-9、ABD-4和DM-130五种大孔吸附树脂对银杏内酯A、B和白果内酯的吸附及解吸性能,并研究了相应的吸附动力学过程,实验结果表明AB-8树脂是一种较适宜的吸附剂。  相似文献   

8.
考察了大孔吸附树脂AB-8对甜菊甙的吸附性能,和溶液的pH值、洗脱剂的种类及流速对树脂吸附,脱附性能的影响;结果表明,AB-8树脂对甜菊甙吸附量高,循环使用性能好且易于洗脱。  相似文献   

9.
考察了大孔吸附树脂AB-8对甜菊甙的吸附性能,和溶液的HP值,洗脱剂的种类及流速对树脂吸附,脱附性能的影响,结果表明,AB-8树脂对甜菊甙吸附量高,循环使用性能好且易于洗脱。  相似文献   

10.
树脂吸附法处理对氨基苯酚生产废水的研究   总被引:18,自引:1,他引:18  
本文选用CHA-111吸附树脂对对氨基苯酚生产过程中的含酚废水进行了处理和回收,研究了树脂种类、吸附流速和脱附剂的类型、浓度、流速、温度等对CHA-111树脂的吸附、脱附性能的影响,并回收对氨基苯酚取得了满意的效果。  相似文献   

11.
聚甲基丙烯酸羟乙酯树脂对胆红素的吸附研究   总被引:6,自引:0,他引:6  
本文通过水相悬浮聚合制备了大孔交联聚甲基丙烯酸羟乙酯(PHEMA)树脂,研究了PHEMA树脂以及用乙醇胺功能基化后的PHEMA树脂对胆红素的吸附性能。结果表明,PHEMA树脂对胆红素的吸附性能受树脂孔结构,吸附温度,离子强度以及溶液中白蛋白的影响。该类吸附剂对胆红素有良好的吸附性能,其中用乙醇胺功能基化的树脂表现出更好的吸附能力。  相似文献   

12.
本工作制备了以大孔交联聚苯乙烯为第一网络,以由环硫氯丙烷与多乙烯多胶反应而形成的交联聚合物为第二网络的互贯型流基胺树脂,并测定了其孔结构.该互贯型树脂与相应的凝胶型树脂相比,在酸性介质中膨胀程度小得多,而对Ag~+、Au~+3n的吸附性能更好.对Ag~+、Au~3+的吸附容量分别可达432mgAg~+/g和553mgAu~3+/g.对Au~3+的吸附率大于99%.  相似文献   

13.
Immunoglobulin G is an important plasma protein with many applications in therapeutics and diagnostics, which can be purified effectively by ion exchange chromatography. The ligand densities and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In this work, with bovine immunoglobulin as the model IgG, the adsorption isotherms and adsorption kinetics were investigated systematically with series of diethylaminoethyl ion-exchange resins with different ligand densities and pore sizes. The Langmuir equation and pore diffusion model were used to fit the experimental data. The influences of ligand density and pore size on the saturated adsorption capacity, the dissociation constant and the effective diffusivity were discussed. The adsorption capacities increased with the increase of ligand density and the decrease of pore size, and an integrative parameter was proposed to describe the combined effects of ligand density and pore size. It was also found that the effective pore diffusion coefficient of the adsorption kinetics was influenced by pore sizes of resins, but was relatively independent on the ligand densities of resins. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.  相似文献   

14.
Polymeric adsorbents with different properties were synthesized via suspension polymerization. Equilibrium and kinetics experiments were then performed to verify the adsorption capacities of the resins for molecules of various sizes. The adsorption of small molecules reached equilibrium more quickly than the adsorption of large molecules. Furthermore, the resins with small pores are easy to lower their adsorption capacities for large molecules because of the pore blockage effect. After amination, the specific surface areas of the resins decreased. The average pore diameter decreased when the resin was modified with either primary or tertiary amines, but the pore diameter increased when the resin was modified with secondary amines. The phenol adsorption capacities of the amine-modified resins were reduced because of the decreased specific area. The amine-modified resins could more efficiently adsorb reactive brilliant blue 4 owing to the presence of polar functional groups.  相似文献   

15.
In this study, a series of acrylic ester resins with different pore size distribution were prepared successfully by varying the type and the amount of pore-forming agents. In order to inves-tigate the adsorption behavior and mechanism of surfactants on acrylic ester resins, three kinds of surfactants were utilized as adsorbates that were sodium 6-dodecyl benzenesulfonate (6-NaDBS), sodium 1-dodecyl benzene sulfonate (1-NaDBS) and sodium 1-dodecyl sulfonate, respectively. It was observed that the surface area was available in a particular pore size and an appropriate pore size of resins appeared to be more important for the adsorption of surfactants. As compared to commercial acrylic ester resins XAD-7 and HP2MG, 50# and 38# resins exhibited more excellent adsorption properties toward 1-NaDBS and 6-NaDBS. The experimental equilibrium data were fitted to the Langmuir, and double-Langmuir models. Two models provided very good fittings for all resins over the temperature range studied. The investigation indicated that electrostatic attraction and hydrogen bond between resins and surfactants were the main forces and had an obvious effect on adsorption proc-ess.  相似文献   

16.
含酮基吸附剂对莱鲍迪甙A的吸附选择性研究   总被引:1,自引:1,他引:0  
合成了一系列具有不同骨架结构的中极性含酮基大孔吸附树脂,研究了树脂极性与骨架结构的关系,讨论了树脂对甜菊糖中两种主要糖甙甜菊甙及莱鲍迪甙A的吸附能力和吸附选择性,并设计通过树脂柱的动态色层法从甜菊甙含量高的甜菊糖中成功地分离出高莱鲍迪甙A糖产品.  相似文献   

17.
Li A  Ma F  Song X  Yu R 《Journal of chromatography. A》2011,1218(11):1437-1442
Solid-phase adsorption toxin tracking (SPATT) technology was developed as an effective passive sampling method for dissolved diarrhetic shellfish poisoning (DSP) toxins in seawater. HP20 and SP700 resins have been reported as preferred adsorption substrates for lipophilic algal toxins and are recommended for use in SPATT testing. However, information on the mechanism of passive adsorption by these polymeric resins is still limited. Described herein is a study on the adsorption of OA and DTX1 toxins extracted from Prorocentrum lima algae by HP20 and SP700 resins. The pore size distribution of the adsorbents was characterized by a nitrogen adsorption method to determine the relationship between adsorption and resin porosity. The Freundlich equation constant showed that the difference in adsorption capacity for OA and DTX1 toxins was not determined by specific surface area, but by the pore size distribution in particular, with micropores playing an especially important role. Additionally, it was found that differences in affinity between OA and DTX1 for aromatic resins were as a result of polarity discrepancies due to DTX1 having an additional methyl moiety.  相似文献   

18.
The presence of sulfonamide antibiotics in aquatic environments poses potential ecological risks and dangers to human health. In this study, porous resins as adsorbents for the removal of two sulfonamides, sulfadiazine and sulfadimidine, from aqueous solutions were evaluated. Activated carbon F-400 was included as a comparative adsorbent. Despite the different surface properties and pore structures of the three resins, similar patterns of pH-dependent adsorption were observed, implying the importance of sulfonamide molecular forms to the adsorption process on the resins. Sulfonamide adsorption to the three resins exhibited different ionic strengths and temperature dependence consistent with sulfonamide speciation and the corresponding adsorption mechanism. Adsorption of sulfadiazine to F-400 was relatively insensitive to pH and ionic strength as micropore-filling mainly contributed to adsorption. The adsorption mechanism of sulfadiazine to the hypercrosslinked resin MN-200 was similar to that of the macroporous resin XAD-4 at lower pH values, whereas it was almost identical to the aminated resin MN-150 at higher pH. This work provided an understanding of adsorption behavior and mechanism of sulfonamide antibiotics on different adsorbents and should result in more effective applications of porous resin for antibiotics removal from industrial wastewater.  相似文献   

19.
In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号