首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the present work manganese(III) has been used as oxidant and microwave radiation and ultrasound energy have been assessed to speed up and to improve the efficiency of digestion step for the determination of chemical oxygen demand (COD). Microwave (MW) and ultrasound-assisted COD determination methods have been optimized by means of experimental design and the optimum conditions are: 40 psi pressure, 855 W power and 1 min irradiation time; and 90% of maximum nominal power (180 W), 0.9 s (s?1) cycles and 1 min irradiation time for microwaves and ultrasound, respectively. Chloride ion interference is removed as hydrochloric acid gas from acidified sample solutions at 150 °C in a closed reaction tube and captured by bismuth-based adsorbent suspended above the heated solution. Under optimum conditions, the evaluated assisted digestion methods have been successfully applied, with the exception of pyridine, to several pure organic compounds and two reference materials. COD recoveries obtained with MW and ultrasound-assisted digestion for five real wastewater samples were ranged between 86–97% and 68–91%, respectively, of the values obtained with the classical method (open reflux) used as reference, with relative standard deviation lower than 4% in most cases. Thus, the Mn(III) microwave-assisted digestion method seems to be an interesting and promising alternative to conventional COD digestion methods since it is faster and more environmentally friendly than the ones used for the same purpose.  相似文献   

2.
Different oxidation methodologies based on ozone and focused ultrasound for the degradation of organic matter and organic-mercury compounds (spiked) present in human urine are discussed. Inorganic and total mercury can be determined in human urine. A flow-injection cold-vapour atomic absorption spectrometer system was used for mercury measurements. Optimization of cold vapour generation was performed with NaBH4 and SnCl2. A two-level full factorial design (2(4)) was applied to understand the cross-effects among the variables influencing the degradation of organic-mercurials and organic matter in urine by KMnO4/HCl/focused ultrasound, namely, KMnO4 and HCl concentration, ultrasonication time and ultrasonication amplitude. Optimization results showed that all variables were significant. New trends in the application of focused ultrasound and ozone are highlighted. As a result of the optimization procedure, one simple, rapid and accurate method was developed for the determination of total mercury in urine samples The method is based on the ultrasound assisted degradation of organo-mercurials and organic matter in urine in the presence of KMnO4/HCl/Focused Ultrasound. The procedure can be accomplished within 3 min, using 50% sonication amplitude provided by a probe ultrasonic device (63 W maximum output power, 22.5 kHz frequency). The method was applied to measure the mercury content in spiked urine from different non-exposed volunteers.  相似文献   

3.
The dyeing of cationized cotton fabric with Solfix E using colouring matter extracted from Cochineal dye has been studied using both conventional and ultrasonic techniques. Factors affecting dye extraction such as ultrasound power, particle size, extraction temperature and time were studied. The results indicated that the extraction by ultrasound at 300 W was more effective at lower temperature and time than conventional extraction. The effect of various factors of dye bath such as pH, salt concentration, ultrasound power, dyeing time and temperature were investigated. The colour strength values obtained were found to be higher with ultrasound than with conventional techniques. The results of fastness properties of the dyed fabrics were fair to good. The scanning electron microscope (SEM) images of the morphological and X-ray analyzes were measured for cationized cotton fabrics dyed with both conventional and ultrasound methods, thus showing the sonicator efficiency.  相似文献   

4.
胡松青  李琳  陈玲 《应用声学》2005,24(5):323-328
采用不同电功率的超声波处理了聚乙二醇(PEG6000)溶液。凝胶渗透色谱(GPC)分析超声处理后的PEG溶液发现,当超声电功率超过250W时,PEG分子量随超声波作用强度的增大而减少,随超声波作用时间的延长而增大;在电功率超过250W超声波作用下,傅立叶红外光谱(FT-IR)分析表明,组成PEG的单体没有明显改变,但是,羟基含量分析表明,PEG固体样品中的羟基含量有所减少。结合实验结果,根据高分子化学、有机化学和超声化学中相关理论对PEG超声化学反应机理进行了探讨,认为:当超声波作用于PEG溶液时,同时存在有PEG的缩水聚合反应和自由基降解反应,当频率为20-25kHz、电功率为250-600W的超声作用于PEG6000溶液时,缩水聚合反应占主导地位。  相似文献   

5.
Ultrasound-assisted approach has been investigated for delignification so as to develop green and sustainable technology. Combination of NaOH with ultrasound has been applied with detailed study into effect of various parameters such as time (operating range of 15–90 min), alkali concentration (0.25 M−2.5 M), solvent loading (1:15–1:30 w/v), temperature (50–90 ˚C), power (40–140 W) and duty cycle (40–70 %) at fixed frequency of 20 kHz. The optimized operating conditions established for the ultrasonic horn were 1 M as the NaOH concentration, 1 h as treatment time, 70˚C as the operating temperature, 1:20 as the biomass loading ratio, 100 W as the ultrasonic power and 70% duty cycle yielding 67.30% as the delignification extent. Comparative study performed using conventional and ultrasonic bath assisted alkaline treatment revealed lower delignification as 48.09% and 61.55% respectively. The biomass samples were characterized by SEM, XRD, FTIR and BET techniques to establish the role of ultrasound during the treatment. The morphological changes based on the ultrasound treatment demonstrated by SEM were favorable for enhanced delignification and also the crystallinity index was more in the case of ultrasound treated material than that obtained by conventional method. Specific surface area and pore size determinations based on BET analysis also confirmed beneficial role of ultrasound. The overall results clearly demonstrated the intensification obtained due to the use of ultrasonic reactors.  相似文献   

6.
High power ultrasonic vibration is widely used for improving manufacturing processes such as machining and metal forming. High frequency mechanical vibration affects material properties and friction forces in contacting surfaces. Flow stress reduction under superimposed ultrasonic vibration is called as acoustic softening. The amount of this parameter should be determined for ultrasonic assisted metal forming processes. For determination of this parameter for workhorse Ti-6Al-4V alloy, experimental setup was designed and fabricated. Then tensile test under longitudinal ultrasonic vibration was performed for different ultrasonic powers. Results show that ultrasonic vibration has considerable effect on plastic behavior of the alloy and decreases flow stress. Also, increasing ultrasonic power leads to higher acoustic softening. Yield stress reduction up to 9.52%, ultimate stress reduction up to 4.55% and elongation up to 13% were obtained at 340 W ultrasonic power. After applying ultrasonic vibrations and its termination, hardness of specimens were measured in which increase up to 9% was observed.  相似文献   

7.
The extracting technology including ultrasonic and microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomato paste were optimized and compared. The results showed that the optimal conditions for UMAE were 98 W microwave power together with 40 KHz ultrasonic processing, the ratio of solvents to tomato paste was 10.6:1 (V/W) and the extracting time should be 367 s; as for UAE, the extracting temperature was 86.4 °C, the ratio of the solvents to tomato paste was 8.0:1 (V/W) and the extracting time should be 29.1 min, while the percentage of lycopene yield was 97.4% and 89.4% for UMAE and UAE, respectively. These results implied that UMAE was far more efficient extracting method than UAE.  相似文献   

8.
The use of ultrasound to enhance the regeneration of zeolite 13X for efficient utilization of thermal energy was investigated as a substitute to conventional heating methods. The effects of ultrasonic power and frequency on the desorption of water from zeolite 13X were analyzed to optimize the desorption efficiency. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 or 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. To analyze the effect of ultrasonic frequency, identical experiments were performed at three nominal ultrasonic frequencies of ~28, 40 and 80 kHz. The experimental results showed that using ultrasound enhances the regeneration of zeolite 13X at all the aforementioned power ratios and frequencies without increasing the total input power. With regard to energy consumption, the highest energy-savings power ratio (0.25) resulted in a 24% reduction in required input energy and with an increase in ultrasonic power, i.e. an increase in acoustic-to-total power ratio, the effectiveness of applying ultrasound decreased drastically. At a power ratio of 0.2, the time required for regeneration was reduced by 23.8% compared to the heat-only process under the same experimental conditions. In terms of ultrasonic frequency, lower frequencies resulted in higher efficiency and energy savings, and it was concluded that the effect of ultrasonic radiation becomes more significant at lower ultrasonic frequencies. The observed inverse proportionality between the frequency and ultrasound-assisted desorption enhancement suggests that acoustic dissipation is not a significant mechanism to enhance mass transfer, but rather other mechanisms must be considered.  相似文献   

9.
Nano-spinel ferrites synthesized via chemical co-precipitation method are small in size and have serious agglomeration phenomenon, which makes separation difficult in the subsequent process. Ni0.4Cu0.2Zn0.4Fe2O4 ferrites nanoparticles were synthesized via co-precipitation assisted with ultrasonic irradiation produced by ultrasonic cleaner with 20 kHz frequency using chlorinated salts and KOH as initial materials. The effects of ultrasonic power (0, 40 W, 60 W, 80 W) and reaction temperature on the microstructure and magnetic properties of ferrite nanoparticles were investigated. The structure analyses via XRD revealed the successful formation of pure (NiCuZn)Fe2O4 ferrites nanospinel without any impurity. The crystallites sizes were less than 40 nm and the lattice constant was near 8.39 Å. The TEM showed ferrite particle polygonal. M−H analyses performed the saturation magnetization and coercivity of ferrite nanoparticles obtained at the reaction temperature of 25℃ were higher than at 50℃ with same power. The samples exhibited the highest values of Ms 55.67 emu/g at 25℃ and 47.77 emu/g at 50℃ for 60 W and the lowest values of Hc 71.23 Oe at 25℃ for 40 W and 52.85 Oe at 50℃ for 60 W. The squareness ratio (SQR) were found to be lower than 0.5, which revealed the single magnetic domain nature (NiCuZn)Fe2O4 nanoparticles. All the outcomes show the ultrasonic irradiation has positive effects on improving the microstructure and increasing magnetic properties.  相似文献   

10.
Physical absorption process is always nullified by the presence of cavitation under low frequency ultrasonic irradiation. In the present study, high frequency ultrasonic of 1.7 MHz was used for the physical absorption of CO2 in a water batch system under elevated pressure. The parameters including ultrasonic power and initial feed pressure for the system have been varied from 0 to 18 W and 6 to 41 bar, respectively. The mass transfer coefficient has been determined via the dynamic pressure-step method. Besides, the actual ultrasonic power that transmitted to the liquid was measured based on calorimetric method prior to the absorption study. Subsequently, desorption study was conducted as a comparison with the absorption process. The mechanism for the ultrasonic assisted absorption has also been discussed. Based on the results, the mass transfer coefficient has increased with the increasing of ultrasonic power. It means that, the presence of streaming effect and the formation of liquid fountain is more favorable under high frequency ultrasonic irradiation for the absorption process. Therefore, high frequency ultrasonic irradiation is suggested to be one of the potential alternatives for the gas separation process with its promising absorption enhancement and compact design.  相似文献   

11.
In this research, the effect of ultrasonic irradiation power (0, 75, 150 and 200 W) and time (0, 5, 15 and 20 min) on the structure, morphology and photocatalytic activity of zinc oxide nanoparticles synthesized by sol-gel method was investigated. Crystallographic structures and the morphologies of the resultant powders were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns showed that ZnO samples were crystallized in their pure phase. The purity of samples was increased by increasing the ultrasonic irradiation power and time. Not only did ultrasonic irradiation unify both the structure and the morphology, but also it reduced the size and prohibited particles from aggregation. The optical behavior of the samples was studied by UV–vis spectroscopy. Photocatalytic activity of particles was measured by degradation of methyl orange under radiation of ultraviolet light. Ultrasound nanoparticles represented higher degradation compared to non-ultrasound ones.  相似文献   

12.
Bisphenol A (BPA), a chemical compound largely used in the plastics industry, can end up in aquatic systems, which it disturbs by its endocrine disrupting effect (EDE). This study investigated the BPA degradation upon ultrasonic action under different experimental conditions. The effect of saturating gas (oxygen, argon and air), BPA concentration (0.15-460 micromol L(-1)), ultrasonic frequency (300-800 kHz) and power (20-80 W) were evaluated. For a 118 micromol L(-1)-BPA solution, with the best performance obtained at 300 kHz, 80 W, with oxygen as saturating gas. In these conditions, BPA can be readily eliminated by the ultrasound process (approximately 90 min). However, even after long ultrasound irradiation times (9 h), more than 50% of chemical oxygen demand (COD) and 80% of total organic carbon (TOC) remained in the solution. Analyses of intermediates using HPLC-MS investigation identified several products: monohydroxylated bisphenol A, 4-isopropenylphenol, quinone of monohydroxylated bisphenol A, dihydroxylated bisphenol A, quinone of dihydroxylated bisphenol A, monohydroxylated-4-isopropenylphenol and 4-hydroxyacetophenone. The presence of these hydroxylated aromatic structures showed that the main ultrasonic BPA degradation pathway is related to the reaction of BPA with the *OH radical. After 2h, these early products were converted into biodegradable aliphatic acids.  相似文献   

13.
超声萃取-酶标仪-微量法测定污染土壤中的总石油烃   总被引:1,自引:0,他引:1  
石油的开采、运输、泄漏及石油产品使用量的不断增加,导致了严重的土壤石油污染,改变了土壤的理化性质,引起土壤中的微生物大量死亡,影响植物的正常生长,并能通过皮肤、呼吸、饮食等方式进入人体,危害健康。因此,土壤石油污染的修复刻不容缓,但修复效果的评价离不开土壤中残留石油的提取和检测,建立快速高效的石油提取和分析测定方法是非常重要的。该研究讨论了检测波长、提取剂种类、提取剂用量以及超声萃取次数、萃取时间、超声萃取功率等影响污染土壤中总石油烃提取的参数和变量,最终建立了一种超声萃取-酶标仪-微量法提取检测污染土壤中总石油烃的方法。确定优化的提取和检测条件为:紫外检测波长为304 nm,用石油醚作提取剂,土液比为1∶4,超声萃取2次,每次萃取时间为20 min,超声萃取功率为100 W。该优化条件下,土壤石油添加回收率是88.4%~101.6%,相对标准偏差均小于4.7%,提取测定结果符合环境分析化学检测要求。利用酶标仪代替紫外分光光度计进行检测,能更方便快速的得出结果,且测定溶液用量少,可以更好地推广应用于微量石油污染环境样品的定量检测。此外,该方法用石油醚和乙醇作为提取和定容试剂,克服了采用二氯甲烷、四氯化碳等有机试剂提取而造成溶剂消耗量大、易产生二次污染、不利于环境友好发展等缺点,是一种快速、高效、绿色的提取和测定污染土壤中总石油烃的方法。  相似文献   

14.
In this work, high frequency and low power ultrasound without external heating source and mechanical stirring in biodiesel production were studied. Transesterification of soybean oil with methanol and catalyzed by KOH was investigated using ultrasound equipment and ultrasonic transducer. The effect of ultrasonic output power (3 W–9 W), ultrasonic frequency (1 MHz and 3 MHz), and alcohol to oil molar ratio (6:1 and 8:1) have been investigated. The increase in ultrasonic power provided higher conversion rates. In addition, higher conversion rates were obtained by increasing the ultrasonic frequency from 1 MHz to 3 MHz (48.7% to 79.5%) for the same reaction time. Results also indicate that the speed of sound can be used to evaluate the produced biodiesel qualitatively. Further, the ultrasound system presented electric consumption (46.2 W∙h) four times lower than achieved using the conventional method (211.7 W∙h and 212.3 W∙h). Thus, biodiesel production using low power ultrasound in the MHz frequency range is a promising technology that could contribute to biodiesel production processes.  相似文献   

15.
This paper presents the novel use of a sonochemical reaction product as a sensing material in self-powered ultrasonic reactor devices for determination of ultrasound parameters. A piezoelectric nanogenerator was fabricated via sonochemical synthesis of SbSeI nanowires compressed into a bulk sample. The prepared device was used to develop two fast and simple evaluation methods for acoustic power in liquid. A calibration procedure was carried out for both methods using a VCX-750 ultrasonic processor. The ultrasound acoustic power was varied within a 150 W to 750 W range and the corresponding nanogenerator electrical responses were measured. The voltage signals of the first method fit the best with theoretical dependence. The second technique was based on the application of the Fast Fourier Transform (FFT) to the measured electric output. The results of these two approaches were convergent. Acoustic power values of 255(8) W and 222(7) W were determined for the Sonic-6 reactor using theoretical dependence fitting to experimental data and FFT analysis, respectively. Developed sensing technology possesses great potential for sonochemistry applications.  相似文献   

16.
The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.  相似文献   

17.
建立了超声波辅助溶剂萃取联用电感耦合等离子体质谱法(ICP-MS)测定生物样品中总汞(T-Hg)和甲基汞(MeHg)的分析方法。实验优化了萃取溶剂种类,溶剂浓度,各种辅助方法和超声波振荡时间等各种萃取条件。选择6 mol·L-1 HCl作为溶剂,超声2 h, 以有机溶剂萃取,再以水反萃,稀释后直接进行测量MeHg的含量。此方法可用于同时测定T-Hg和MeHg, 检出限为0.01 ng·mL-1,相对标准偏差为3.44%,线性范围为1~50 ng·mL-1,加标回收率为80%~97%。在此条件下测定了5种不同类型生物标准参考物质的T-Hg和MeHg,测定值与标准值吻合。该法综合了超声波辅助萃取和溶剂微萃取以及ICP-MS的优点,操作简便快速,灵敏度高,适合于各种生物样品中痕量MeHg快速萃取分离和分析。  相似文献   

18.
To improve DMFC (direct methanol fuel cell) performance, a new method using ultrasonic radiation is proposed and a novel DMFC structure is designed and fabricated in the present paper. Three ultrasonic transducers (piezoelectric transducer, PZT) are integrated in the flow field plate to form the ultrasonic field in the liquid fuel. Ultrasonic frequency, acoustic power, and methanol concentration have been considered as variables in the experiments. With the help of ultrasonic radiation, the maximum output power and limiting current of cell can be independently increased by 30.73% and 40.54%, respectively. The best performance of DMFC is obtained at the condition of ultrasonic radiation (30 kHz and 4 W) fed with 2 M methanol solution, because both its limiting current and output power reach their maximum value simultaneously (222 mA and 33.6 mW, respectively) under this condition. These results conclude that ultrasonic can be an alternative choice for improving the cell performance, and can facilitate a guideline for the optimization of DMFC.  相似文献   

19.
Effects of ultrasonic energy on the wash fastness of reactive dyes   总被引:10,自引:0,他引:10  
Akalin M  Merdan N  Kocak D  Usta I 《Ultrasonics》2004,42(1-9):161-164
The field of ultrasonic is still making strides towards perfection, but already many applications of ultrasonic energy have been found in science and technology. There is also a field called sonochemistry where ultrasonic energy is used to create some chemical and mechanical effects on matter immersed or solved in liquids. It was presumed that ultrasonic textile washing could be a competitive alternative to conventional textile washing techniques; and as such the following experiments were conducted. In this study, the effects of ultrasonic energy on the wash fastness of reactive dyes, which have three different reactive groups, were investigated. After dyeing with the conventional method, the samples were applied with three types of washing processes simultaneously (conventional, ultrasonic probe and ultrasonic bath) and comparisons were made. Three different fixing agents were used in the washing processes. Colourfastness, staining fastness, magnitude of total colour difference (DeltaE) and lightness difference of the colour (DeltaL) values of dyed samples were measured.  相似文献   

20.
As a new and clean extraction technology, ultrasonic extraction has been demonstrated with great potential in the preparation of modified starch. In order to increase its added value, it is necessary to modify pea starch to enlarge its application. In this study, the efficiency of combining ultrasonic with alkali in the extraction of pea starch was evaluated and compared to conventional alkali extraction. Ultrasonic-assisted alkali extraction conditions were optimized using single-factor experiments and response surface methodology. The results revealed that maximum yield of pea starch (54.43 %) was achieved using ultrasound-assisted alkali extraction under the following conditions: sodium hydroxide solution with a concentration of 0.33 %, solid/alkali solution ratio of 1:6 (w/v), ultrasonic power of 240 W, temperature of 42 °C, and extraction time of 22 min. The ultrasound-assisted alkali extraction yielded 13.72 % greater pea starch than conventional alkali extraction. On the other hand, morphological, structural, and physicochemical properties of the obtained starch isolates were evaluated. The ultrasound-assisted alkali extraction resulted in pea starch with greater amylose content, water-solubility, swelling power, and viscosity compared with conventional alkali extraction. Furthermore, ultrasonication influenced the morphological properties of pea starch granules, while the molecular structure and crystal type were not affected. Moreover, the ultrasonic-assisted extraction produced starch with a slightly greater resistant starch content. Therefore, ultrasonic-assisted extraction can be suggested as a potential method for extracting pea starch with improved functional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号