共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
本文综合宏观经济变量,利用混频动态因子模型测度月度GDP,之后结合货币供应量、房价以及股价等金融变量,基于贝叶斯时变VAR模型构建科学的金融状况指数(FCI),并采用谱分析研究其预警能力。研究结果表明,股票市场、房地产市场、货币政策与实体经济对我国金融市场状况的影响具备时变性。基于贝叶斯时变VAR模型的脉冲响应分析可以发现,上述变量的影响程度依次递减。在此基础上构建的FCI较基于常系数VAR模型构建的FCI具备更强的预警能力,尤其进行三个月以内的短期预测时,优势更加明显,进而可以为有效监测金融市场状况,预警通货膨胀与金融风险提供科学决策依据。 相似文献
4.
贝叶斯统计推断通常会遇到后验分布中出现高维积分这一公认的计算难题。一种常用的解决方法是使用MCMC算法。然而,MCMC算法在处理高维大数据或复杂模型时计算效率很低,并且难以判断算法收敛性。针对自适应贝叶斯收缩模型、贝叶斯LASSO模型和扩展的贝叶斯LASSO模型,本文提出了一种更高效的变分贝叶斯(VB)算法来进行参数估计和变量选择。该算法源于理论物理中的平均场理论。它将复杂积分问题转化为最优化问题,使用假定分布族中最接近目标后验分布的分布来近似求解,并且易于判断算法收敛情况。数值模拟结果显示,VB算法不仅计算速度明显优于MCMC算法,而且其模型拟合和变量选择效果也与MCMC算法相当,可以作为MCMC算法的一种替代方法。最后,本文运用VB算法分析了俄罗斯房产售价的重要影响因素。 相似文献
5.
本文探讨商业银行如何利用贝叶斯分类技术构建企业客户财务危机预测模型。本文使用财务比率作为评价企业绩效的特征属性,并考察两个不同的贝叶斯模型在估计企业客户发生财务危机的后验概率方面的有效性。一个比较简单但有较多的假设,即朴素贝叶斯模型;另一个某种程度上更为复杂但有更少的假设,即组合属性贝叶斯模型。研究发现,与朴素贝叶斯模型相比,由于组合属性贝叶斯模型更好地反映了变量之间潜在的联合分布,因此它能在历史数据支持下估计所要求的概率并做出更精确的预测。所提出的模型可以作为辅助银行审核者做出正确而快速决策的有用工具。 相似文献
6.
《数理统计与管理》2019,(4):602-618
广义自回归条件异方差(GARCH)模型能够很好地刻画金融资产收益二阶矩的相依关系,因此在金融时间序列中受到了广泛的应用。在GARCH模型的框架下,本文利用贝叶斯局部影响分析来评价先验、个体观测和样本分布的微小扰动的影响,利用扰动模型来刻画不同类型的扰动形式。我们构建了扰动模型的贝叶斯扰动形式,计算其几何量来表征扰动模型的内部结构。基于几个目标函数,本文利用几个不同的局部影响测量来量化不同扰动的程度。数值模拟研究验证了所提方法的有限样本表现。对纽约证券交易所综合指数(NYSE)和标准普尔500指数的GARCH建模说明了所提方法在实例研究中的有效性。 相似文献
7.
贝叶斯向量自回归分析方法及其应用 总被引:2,自引:1,他引:2
由于经济环境的多变,使得经济预测面临数据量少的建模难题,贝叶斯方法对小样本数据建模问题具有明显优势。本文在共轭条件似然函数"矩阵正态-Wishart分布"意义下,首先讨论了向量自回归模型的贝叶斯分析方法,得到了模型参数的后验分布与一步预测分布。其次,给出了分量方程的对应结果,说明了模型阶数的推断方法。最后,列出了计算步骤,并作为应用,对上海房地产价格指数数据进行预测建模,取得了较好效果。 相似文献
8.
针对非对称厚尾GARCH模型参数的预选分布很难确定的问题。对模型参数空间进行数据扩张,把模型中的厚尾残差分布表示成正态分布和逆伽玛分布的混合分布,然后通过对参数的后验条件分布进行变换获得参数的预选分布,从而利用M-H抽样实现了非对称厚尾GARCH模型的贝叶斯分析。中国原油收益率波动的实证研究发现中国原油收益率的波动具有高峰厚尾性但不存在"杠杆效应",样本内的预测评价发现基于M-H抽样的贝叶斯方法优于极大似然方法,说明了M-H抽样方案设计的有效性。 相似文献
9.
10.
针对频率统计方法存在不连续的置信区间以及在小样本情况下检验势比较低的问题。把非对称Laplace分布表示成正态分布和指数分布的线性组合,推导了不同先验分布情况下参数的最大后验密度置信区间,并构造了分位回归单位根检验的贝叶斯因子,实现了对非平稳时间序列的局部单位根检验。仿真分析表明贝叶斯分位回归方法是一种稳健全面的单位根检验方法。对我国居民消费价格指数的实证研究发现,我国居民消费价格指数表现出局部的持续性,在分布的下尾部不受普通冲击的影响,但在分布的上尾部受普通冲击的影响。 相似文献
11.
由于受形态变化、光照变化、视觉碰撞和视觉模糊的影响,基于监控视频的车辆分类和计数一直都是待解决的复杂问题。为了更好地解决这个问题,本文提出新的模型来更好的提取前景。详细来讲,在初次前景提取中,建立模型判断是否存在车辆碰撞,对存在碰撞的车辆通过灰度空间双阀值和YCbCr图像空间处理后,对前景进行更准确的再提取。并在此基础上针对碰撞车辆,定义间隙特征向量将车辆分割问题转换为寻找分割点的优化问题,从而给出高效的车辆分割算法,对发生碰撞的车辆进行准确分割。之后利用神经网络对车辆分类,并设计一种基于已正确对碰撞车辆分割的算法对车辆计数。实验结果表明,本文提出的模型在视频车辆的分类和计数中取得优异的表现,并且数据处理速度能够满足及时性。比起人为计算车流量或建立三维模型等进行分析车辆碰撞情况下的车辆分类与计数,此方法兼顾了准确性与时效性,效率提高,成本减少。 相似文献
12.
We address the classification problem where an item is declared to be from populationπjif certain of its characteristicsvare assumed to be sampled from the distribution with pdf fj(vθj), wherej=1, 2, …, m. We first solve the two population classification problem and then extend the results to the generalmpopulation classification problem. Usually only the form of the pdf's is known. To use the classical classification rule the parameters,θj, must be replaced by their estimates. In this paper we allow the parameters of the underlying distributions to be generated from prior distributions. With this added structure, we obtain Bayes rules based on predictive distributions and these are completely determined. Using the first-order expansion of the predictive density, where the coefficients of powers ofn−1remain uniformly bounded innwhen integrated, we obtain an asymptotic bound for the Bayes risk. 相似文献
13.
基于贝叶斯统计方法的两总体基因表达数据分类 总被引:1,自引:0,他引:1
在疾病的诊断过程中,对疾病的精确分类是提高诊断准确率和疾病治愈率至 关重要的一个环节,DNA芯片技术的出现使得我们从微观的层次获得与疾病分类及诊断 密切相关的基因功能信息.但是DNA芯片技术得到的基因的表达模式数据具有多变量小 样本特点,使得分类过程极不稳定,因此我们首先筛选出表达模式发生显著性变化的基因 作为特征基因集合以减少变量个数,然后再根据此特征基因集合建立分类器对样本进行分 类.本文运用似然比检验筛选出特征基因,然后基于贝叶斯方法建立了统计分类模型,并 应用马尔科夫链蒙特卡罗(MCMC)抽样方法计算样本归类后验概率.最后我们将此模型 应用到两组真实的DNA芯片数据上,并将样本成功分类. 相似文献
14.
《数理统计与管理》2019,(1):49-61
本文利用非参数贝叶斯方法进行随机波动建模。通常的参数随机波动模型适用于证券市场中的综合指数数据,而对个股数据和小范围指数数据的拟合效果较差,主要原因是其收益率数据的变化规律更为复杂、具有更厚的尾部行为,而非参数贝叶斯方法的随机波动模型无需进行分布假设,具有很强的灵活性。本文利用SV-DPM模型对IBM的股票价格数据和上证50指数数据进行建模,研究发现非参数随机波动模型能拟合参数随机波动模型难以扑捉到的数据特征,实证表明有充分的依据支持非参数贝叶斯随机波动模型。论文的研究有助于捕捉金融资产的时变波动性质,能更好的揭示金融市场的运行规律,为期权定价和金融风险管理提供依据,对于防范与控制金融风险有着重要意义。 相似文献
15.
为了求解带有条件风险价值(CVaR)约束的均值-方差模型,提出一种基于广义学习和柯西变异的粒子群算法(CCPSO).在CCPSO算法中,为了提升种群跳出局部最优解的能力,引入一种广义学习策略,提升粒子向最优解飞行的概率;并引入一种动态变异概率,对粒子自身最优位置进行柯西变异,更好地引导种群的飞行;最后,根据全局最优粒子的运行状况,每间隔若干代对其进行变异,以产生全局新的领导者.在基准函数测试中,结果显示CCPSO算法有较好的运行结果.在CVaR模型投资组合优化中,与其它算法相比,CCPSO算法所获结果是有效的,并且优于其它算法. 相似文献
16.
Bayesian Model Choice of Grouped t-Copula 总被引:1,自引:0,他引:1
Xiaolin Luo Pavel V. Shevchenko 《Methodology and Computing in Applied Probability》2012,14(4):1097-1119
One of the most popular copulas for modeling dependence structures is t-copula. Recently the grouped t-copula was generalized to allow each group to have one member only, so that a priori grouping is not required and the dependence modeling is more flexible. This paper describes a Markov chain Monte Carlo (MCMC) method under the Bayesian inference framework for estimating and choosing t-copula models. Using historical data of foreign exchange (FX) rates as a case study, we found that Bayesian model choice criteria overwhelmingly favor the generalized t-copula. In addition, all the criteria also agree on the second most likely model and these inferences are all consistent with classical likelihood ratio tests. Finally, we demonstrate the impact of model choice on the conditional Value-at-Risk for portfolios of six major FX rates. 相似文献
17.
《数学的实践与认识》2017,(22)
根据实测数据估计Logistic模型参数时,对已有的数据不满足直接利用三点法、四点法应用条件的问题,提出一类改进的三点法、四点法,即迭代逼近算法.以底部耗氧型结冰湖的溶解氧浓度分布为例,建立冰盖下溶解氧浓度垂直分布的Logistic模型,采用迭代逼近算法估计该模型的参数值.结果表明:改进的三点法、四点法的判定系数都较高,均可用于Logistic模型的参数估计,但改进的四点法整体优于改进的三点法.算法进一步完善了Logistic模型的参数估计方法. 相似文献
18.
王海军 《数学的实践与认识》2017,(2):142-147
遥感影像分类作为遥感技术的一个重要应用,对遥感技术的发展具有重要作用.针对遥感影像数据特点,在目前的非线性研究方法中主要用到的是BP神经网络模型.但是BP神经网络模型存在对初始权阈值敏感、易陷入局部极小值和收敛速度慢的问题.因此,为了提高模型遥感影像分类精度,提出采用MEA-BP模型进行遥感影像数据分类.首先采用思维进化算法代替BP神经网络算法进行初始寻优,再用改进BP算法对优化的网络模型权阈值进一步精确优化,随后建立基于思维进化算法的BP神经网络分类模型,并将其应用到遥感影像数据分类研究中.仿真结果表明,新模型有效提高了遥感影像分类准确性,为遥感影像分类提出了一种新的方法,具有广泛研究价值. 相似文献