首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
On Hexagonal Perovskites with Cationic Vacancies. VII. Vibrational Spectroscopie investigations on the Rhombohedral 12 L-Stacking Polytypes Ba4BII(Re2□O12) and Ba4B □1/3 (Re2 □ O12) For the rhombohedral 12 L stacking polytypes Ba4BII(Re2□O12) and Ba4B□1/3(Re2□O 12), space group R3 m, sequence (3)(1), the lattice consists of groups of three face sharing octahedra with the composition Re2□O12. They are isolated from each other by the Ba and B ions.The vibrational spectra are interpreted according to the factor group analysis. For the Re2□O12 unit (symmetry D3d) the results of a complete vibrational analysis and the calculation of the force constants are reported.  相似文献   

2.
On Hexagonal Perovskites with Cationic Vacancies. XXVII. Systems Ba4?xSrxBIIRe2□O12, Ba4B CaxRe2□O12, and Ba4?xLaxBIIRe2?xWx□O12 with BII = Co, Ni In the systems Ba4?xSrxBIIRe2□O12, Ba4BCaxRe2□O12 and Ba4?xLaxBIIRe2?xWx□O12 (BII = Co, Ni) hexagonal perovskites with a rhombohedral 12 L structure (general composition A4BM2□O12; sequence (hhcc)3; space group R&3macr;m) are observed. With the exception of Ba4NiRe2□O12 the octahedral net consists of BO6 single octahedra and M2□O12 face connected blocks (type 1). In type 2 (Ba4NiRe2□O12) the M ions are located in the single octahedra and in the center of the groups of three face connected octahedra. The two outer positions of the latter are occupied by B ions and vacancies in the ratio 1:1. The difference between type 1 and 2 are discussed by means of the vibrational and diffuse reflectance spectra.  相似文献   

3.
On Hexagonal Perovskites with Cationic Vacancies. III. Structure Determination on Compounds of Type Ba2B □2/3 ReVIIO6 Compounds of Type Ba2B □2/3 ReVIIO6 with BIII = rare earth, Y. Sc, In belong to the group of hexagonal perovskite stacking polytypes. For BIII = Gd, Y structure determinations with powder data have been performed. The refined R′ factors are 9.11% for Ba2Gd1/3□2/3ReO6 and 12.07% for Ba2Y1/3□2/3ReO6. The structure represents a rhombohedral 12 L type (space group R3 m) with the sequence hhcchhcchhcc. The lattice contains groups of three octahedra connected by common faces which are linked together by a single octahedron via common vertices. In the block of three face-sharing octahedra the central octahedral lattice site is vacant and the two outer positions are occupied by the rhenium atoms. According to this distribution direct contact of occupied face-sharing octahedra is absent.  相似文献   

4.
Photoluminescence of Trivalent Rare Earths in Perovskite Stacking Polytypes Ba2La2?x RE MgW2□O12, Ba6Y2?x RE W3□O18, and Sr8SrGd2?xRE W4□O24 Rhombohedral 12 L stacking polytypes Ba2La2?xREMgW2□O12 show with RE3+ = Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm; the 18 L stacking polytypes Ba6Y2?xREW3□O18 and the polymorphic perovskites Sr8SrGd2?xREW4□O24 with RE3+ = Sm, Eu, Dy, Ho, Er visible photoluminescence. The concentration dependence and the influence of the coordination number of the rare earth are reported.  相似文献   

5.
On Hexagonal Perovskites with Cationic Vacancies. XXIV. Rhombohedral 9 L Stacking Polytypes in the Systems Ba3W M □O9?x/2x?2 with MV = Nb, Ta In the system Ba3WNb□O9?x/2x/2 stacking polytypes of rhombohedral 9 L type (sequence (hhc)3; space group R3 m) can be prepared with ~1/3 ? × ? 2. For x = 2(Ba3Nb2□O8□) two modifications are formed. In the corresponding Ta system the phase with is reduced to a smaller region with x ? 1/3.  相似文献   

6.
On Hexagonal Perovskites with Cationic Vacancies. XXXI. Systems BaO? Re2O7? M O5 with MV = Nb, Ta In the systems BaO? Re2O7? MO5 three quaternary oxides are formed, which belong to the perovskite stacking polytypes with cationic vacancies: Ba8Re7/2M□3O24 (MV = Nb, Ta; rhombohedral 24 L type; sequence (hhhhchhc)3; space group R3 m), Ba4Re9/8Ta13/85/4O12 (rhombohedral 12 L type; sequence (hhcc)3; space group R3 m) and the phases Ba5BaRe3/2?xM □O15?xx (MV = Nb, Ta; variants of a hexagonal 5 L type).  相似文献   

7.
On Ordered Perovskites with Cationic Vacancies. IX. Compounds of the Type Sr2Sr1/4B □1/4WO6?Sr8SrB ?W4O24 (BIII ? La, Pr, Nd, Sm–Tm, Y) The compounds Sr2Sr1/4B□1/4WO6?Sr8SrB?W4O24 belong to the group of perovskites with octahedral cationic vacancies (cation/vacancy ratio (CN 6) ?:1). For the larger BIII ions (La, Pr, Nd, Sm–Dy) different ordering effects are observed. The perovskites with BIII ? Sm, Eu, Gd are polymorphic too (HT modification: higher ordered cubic perovskite (BIII ? Gd: a = 2X8.234 Å); LT modification: hexagonal perovskite stacking polytype (BIII ? Gd: a = 9.954 Å; c = 19.04 Å)). With the smaller BIII ions (Ho, Er, Tm and Y) a cubic, 1:1 ordered perovskite type is observed.  相似文献   

8.
On the System Ba2Gd2/31/3U1?xWxO6 and Hexagonal Perovskites of an 18-Layer Type In the system Ba2Gd2/31/3U1?xWxO6 the formation of a continuous solid solution series is observed. With x ? 0.9 the mixed crystals have a cubic 1:1 ordered perovskite structure. With x ≥ 0.95 the compounds are polymorphic: besides an cubic 1:1 ordered perovskite type for x = 0.95; 0.99 and 1.00 one hexagonal layer structure exists. This lattice is in all cases rhombohedral (space group R3 m) and represents an 18 L-type. Likewise the compounds Ba2B□1/3WVIO6 with BIII = Tb-Lu and Y belong to the 18 L-type.  相似文献   

9.
On Hexagonal Perovskites with Cationic Vacancies. XXVI. Ba12Ba2 2/3M 1/32O333 (MV = Nb, Ta) – the First Stacking Polytypes of a Rhombohedral 36 L-Type In the systems BaO? MO5(MV = Nb, Ta) for a Ba:MV ratio of 2:1 polymorphism is observed. Here the low temperature modifications are described. They crystallize in a rhombohedral 36 L structure with three formula units Ba12Ba2 2/3M 1/32O333 for the trigonal setting (MV = Nb: a = 5.922 Å; c = 93.25 Å; Ta: a = 5,922 Å; s = 93.4 Å).  相似文献   

10.
On Hexagonal Perovskites with Cationic Vacancies. XXX. 5 L Stacking Polytypes in the Systems BaO — Re2O7? Sb2O5 and BaO? WO3? Sb2O5 In the systems BaO? Re2O7? Sb2O5 and BaO? WO3? Sb2O5 phases of composition Ba5BaRe Sb□O15?xx (x = 0 up to x ? 3/4) and Ba5BaWSb□O15?x/2x/2 (x ? 3/2 up to x ? 2) are existent, which have an orthorhombic distorted 5 L structure. The pure Sb compound has to be formulated as Ba3BaSb2O9 and crystallize in an orthorhombic variant of the hexagonal BaTiO3 type.  相似文献   

11.
On Hexagonal Perovskites with Cationic Vacancies. XV. Ba9Nb6W□2O27 – the First Perovskite Stacking Polytype of Rhombohedral 27 L-Type The perovskite stacking polytype Ba9NbWVI2O27(white) is the first representative of a rhombohedral 27 L-type. The lattice parameters (trigonal setting) are: a = 5.793 Å; c = 63.41 Å; Z = 3 (?exp = 6.46 g/cm3; ?calc = 6.512 g/cm3). The corresponding TaV -compound is isotypic; it tends to develop stacking faults.  相似文献   

12.
On the Synthesis and Crystal Structure of Ba6Lu4Zn10O22 with [OBa6] Octahedra Single crystals of Ba6Lu4Zn10O22 have been prepared by high temperature reactions and investigated by X-ray techniques. This compound is isotypic to Ba3In2Zn5O11 and the first member of the Rare Earth elements. Ba6Lu4Zn10O22 crystallizes with cubic symmetry, space group T-F4 3m, a = 13.452(1) Å and Z = 4. Zn2+ shows a tetrahedral, Lu3+ an octahedral and Ba2+ a three-fold capped trigonal prismatic coordination by O2?. The ZnO4 tetrahedra and LuO6 octahedra are forming macro polyhedra of the type Zn10O20 and Lu4O16. A discussion is given for the Ba6O33 and Ba6O42 groups.  相似文献   

13.
On Ordered Perovskites with Cationic Vacancies. X. Compounds of Type A B B □1/4MVIO6 ? A BIIB □M O24 with AII, BII = Ba, Sr, Ca and MVI = U, W Perovskites of type Ba8BIIB2III□UO24 show polymorphic phase transformations of order disorder type. An 1:1 ordered orthorhombic HT form is transformed into a higher ordered LT modification with a fourfold cell content (four formula units Ba8BIIB□U4O24), compared to cubic 1:1 ordered perovskites A2BMO6. In the series Ba8BaB□W4O24 and Sr8SrB□W4O24 different ordering phenomena are observed. In comparison with 1:1 ordered cubic perovskites A2BMO6, the cell contains eight formula units ABIIB□W4O24. The higher ordered cells with UVI and WVI are face centered, which has its origin in an ordering of cationic vacancies.  相似文献   

14.
Determination of Structures of Ordered Perovskites of the Ba2B MVIO6 Type Intensity calculations on powder patterns of Ba2Y□0.33MVIO6 with MVI = U, W, Te und Ba2Gd0.670.33UO6 lead for the space group Fm3m/O with 8 Ba in 8c, 8/3 BIII and 4/3 □ in 4b, 4 MVI in 4a and 24 O in 24e to R values between 4.3 and 7.6%. Two further models are discussed.  相似文献   

15.
On Hexagonal Perovskites with Cationic Vacancies. XIV. The Rhombohedral 12 L-Stacking Polytypes Ba2La2BII(W □O12) Rhombohedral 12 L-stacking polytypes with cationic vacancies of type Ba2La2BII-(W□O12) are reported for BII = Mg, Zn (white), Ni(light brown) and Co(brown). They crystallize in the space group R3 m, sequences (3 )(1) ? (hhcc)3. For BII = Cu, as a consequence of the Jahn Teller effect, a triclinic distorted lattice is observed.  相似文献   

16.
On Hexagonal Perovskites with Cationic Vacancies. XXVIII. Structure of Rhombohedral 9 L Stacking Polytypes Ba3W Nb □O9?x/2x/2 According to the intensity calculations for Ba3W4/3Nb2/3□O26/31/3 and Ba3Nb2□O8□(II) these rhombohedral 9 L compounds crystallize in the space group R3m, sequence (hhc)3. The refined, intensity related R′ values are 6.9% (Ba3W4/3Nb2/3□O26/31/3) and 7.2% (Ba3Nb2□O8□(II)). The relations between the rhombohedral 9 L structure (A3M2□O9) and the palmierite type (A3M2□O8□) are discussed.  相似文献   

17.
On Perovskites Ba2B B TeVIO6 Compounds of composition Ba2BBTeVIO6 with BI = Li, Na; BIII = La, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Yb, Y, In, Sc crystallize in a cubic 1:1 ordered perovskite structure. The vibrational spectroscopic investigations show, that more species of TeO6 octahedra are present in the lattice.  相似文献   

18.
Compounds of the Type Ba3BIIM O9 with BII ? Mg, Ca, Sr, Ba, and MV ? Nb, Ta The hexagonal perovskites Ba3BIIMO9 (MV ? Nb, Ta) crystallize with BII ? Mg Ca in a 3 L structure (sequence (c)3) and BII ?; Sr in the hexagonal BaTiO3 type (6 L; sequence (hcc)2) with an 1:2 order for the B and M ions. Intensity calculations for Ba3SrNb2O9 and Ba3SrTa2O9 gave in the space group P63/mmc a refined, intensity related R′ value of 8.4% (Nb) and 9.0% (Ta) respectively. For BII ? Ba the perovskite Ba3BaTa2O9 has an orthorhombic distorted 6 L structure and forms with Ba3SrTa2O9 a continuous series of mixed crystals (Ba3Sr1?xBaxTa2O9). In the system Ba3Sr1?xBaxNb2O9 the range of existence of the hexagonal BaTiO3 type is confined to the Sr richer end. The pure Ba compound possesses a proper structure type (5 L: Ba5BaNb3□O13.51.5).  相似文献   

19.
Ba3Lu4O9: Synthesis and Crystal Structure Determination Single crystals of Ba3Lu4O9 were prepared by high temperature reactions (CO2-Lasertechnique). The single crystal X-ray work leads to a rhombohedral symmetry with a = 8.96 Å and α = 39.42° (space group C—R3). Characteristic features of this crystal structure are shown and discussed.  相似文献   

20.
On Hexagonal Perovskites with Cationic Vacancies. I. Compounds of the Type Ba2B □2/3ReVIIO6 Compounds of Type Ba2B□2/3ReVIIO6 are formed with BIII = Sm? Gd Ho? Lu, Y, Sc, In (yellow); Tb (black-brown); Dy (yellow-orange). They crystallize with BIII = Sm? Lu, Y and Sc in a rhombohedral layer structure of 12 L-type (space group R3 m; sequence: cchhcchhcchh) with 6 formula units in the unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号