首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

2.
Metal complexes of the type cis-(RCN)3M(CO)3 (M = Cr, Mo, W) have been prepared by different methods starting with M(CO)6 or, more conveniently, with substituted derivatives of the metal hexacarbonyls. Infrared spectroscopic studies indicate that the strength of the nitrile-to-metal bond in cis-(RCN)3M(CO)3 is only sligthly influenced by the R group. The chromium compounds cis-(RCN)3Cr(CO)3 may be used as starting materials for the preparation of hexaalkylborazine-chromium-tricarbonyls.  相似文献   

3.
Vibrational Raman Spectra of Hexahalo Complexes of OsIV (X = Cl, I) and IrIV (X = Cl, Br) at 80 K The Resonance-Raman (RR) spectra of the tetrabutyl- resp. tetraethylammonium salts of [OsCl6]2?, [OsI6]2?, [IrCl6]2?, and [IrBr6]2? have been investigated with the excitation-lines of an Ar+ and Kr+ laser. Devices with a movable sample holder for low-temperature experiments (80 K) are described. The anormal intensities of some of the Ra-active fundamentals are attributed to the RR effect. As a rule the deformation vibration υ5(T2g) is RR enhanced if excited within a π—π*(dt2g)-CT-transition and the stretching vibration υ2(Eg) is RR-enhanced within a π—σ*(deg)-CT-transition. The dispersion of the degree of depolarisation of the three Ra-active fundamentals of [IrBr6]2? demonstrates, that this rule cannot only be applicated to the symmetrical but also to the antisymmetrical part of the scattering tensor.  相似文献   

4.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

5.
Preparation of C6H5M(CO5 (M = Mn, Re) and Ortho-Metallated Ketones with a Manganese or Rhenium Ring Member C6H5Mn(CO)5 and C6H5Re(CO)5 were obtained by a new preparation method by a photochemical reaction between M2(CO)10 (M = Mn, Re) and (C6H5)2Hg. The reaction of C6H5Mn(CO)5 with (CH3)2Hg at different reaction conditions yielded the o-metallated benzophenone or the acetophenone; such known o-metallated derivates were prepared as yet by a reaction between the ketones and CH3Mn(CO)5. The ortho-metallated ketones and or were reaction products between Mn2(CO)10 and R2Hg (R?C6H5 or p-(CH3)2NC6H4). On the contrary Re2(CO)10 and (C6H5)2Hg were capable to form the analogous ortho-metallated benzophenone derivatives only by an addition of benzophenone. A substitution reaction of a CO ligand by P(C6H5)3, a fission of the five-membered heterocyclic ring and a phenylation was carried out for some of such o-metallated ketones. The products were characterized by infrared spectroscopic measurements.  相似文献   

6.
M(CO)5X (M = Mn, Re; X = Cl, Br, I) reacts with DAB (1,4-diazabutadiene = R1N=C(R2)C(R2)′=NR′1) to give M(CO)3X(DAB). The 1H, 13C NMR and IR spectra indicate that the facial isomer is formed exclusively. A comparison of the 13C NMR spectra of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = glyoxalbis-t-butylimine, glyoxyalbisisopropylimine) and the related M(CO)4DAB complexes (M = Cr, Mo, W) with Fe(CO)3DAB complexes shows that the charge density on the ligands is comparable in both types of d6 metal complexes but is slightly different in the Fe-d8 complexes. The effect of the DAB substituents on the carbonyl stretching frequencies is in agreement with the A′(cis) > A″ (cis) > A′(trans) band ordering.Mn(CO)3Cl(t-BuNCHCHNt-Bu) reacts with AgBF4 under a CO atmosphere yielding [Mn(CO)4(t-BuNCHCHN-t-Bu)]BF4. The cationic complex is isoelectronic with M(CO)4(t-BuNCHCHNt-Bu) (M = Cr, Mo, W).  相似文献   

7.
On the Preparation of Yttrium Hydride Halides YXHn (X ? Cl, Br) The compounds YCl and YBr described in a previous paper as “monohalides” in reality are hydridehalides YClHn and YBrHn with the H-concentration in the range 0.7 ≤ n ≤ 1.0. Dehydrogenation experiments on YCIH0.7 in all cases resulted in heterogeneous products consisting of YCl3, Y and YClHn. With increasing hydrogen content the c-lattice parameter decreases. Observed minimal c-lattice parameter is 2727.0(7) pm (for n ≈? 1), maximum c-lattice parameter is 2752.3(4) pm (for n ≈? 0.68). YBrHn crystallizes in the ZrBr-structure type, YClHn for 0.7 ≤ n ≤ 0.8 in the ZrBr-type, for 0.8 ≤ n ≤ 1.0 in the ZrCl-type. YXHn (X ? Cl, Br) has a graphite like colour and in H atmosphere can be hydrogenated to the colourless compound YXH2. YClH2 and YBrH2 are isotypic with TbBrD2. A miscibility gap was found between YClH1.0 and YClH2.0.  相似文献   

8.
Preparation and spectroscopic characterization of the decahalogenodirhenates(IV), [Re2X10]2?, X = Cl, Br On heating of [ReX6]2? with trifluoroacetic acid/trifluoroacetic anhydride (1 : 1), the edge-sharing bioctahedral anions [Re2X10]2?, X = Cl, Br are formed, which IR and Raman spectra are assigned according to point group D2h. The bands are found in three characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(ReClt): 367–321, v(ReBrt): 242–195; in an intermediate region with bridging ligands v(ReClb): 278–250, v(ReBrb): 201–167 cm?1, and at distinct lower frequencies the deformation modes. The absorption spectra of the dirhenates are distinguished in the region 600–1400 nm by eight intraconfigurational transitions with a slight bathochromic shift and higher intensities in comparison to the monomeric complexes. Due to a stronger bonding of the terminal ligands the energy of the charge transfer bands is lowered by about 4 000 cm?1, too. The magnetic moments are 3.32 and 3.81 B.M./ReIV for [Re2Cl10]2? and [Re2Br10]2?, respectively.  相似文献   

9.
The CO exchange on cis-[M(CO)2X2]- with M = Ir (X = Cl, la; X = Br, 1b; X = I, 1c) and M = Rh (X = Cl, 2a; X = Br, 2b; X = I, 2c) was studied in dichloromethane. The exchange reaction [cis-[M(CO)2X2]- + 2*CO is in equilibrium cis-[M(*CO)2X2]- + 2CO (exchange rate constant: kobs)] was followed as a function of temperature and carbon monoxide concentration (up to 6 MPa) using homemade high gas pressure NMR sapphire tubes. The reaction is first order for both CO and cis-[M(CO)2X2]- concentrations. The second-order rate constant, k2(298) (=kobs)[CO]), the enthalpy, deltaH*, and the entropy of activation, deltaS*, obtained for the six complexes are respectively as follows: la, (1.08 +/- 0.01) x 10(3) L mol(-1) s(-1), 15.37 +/- 0.3 kJ mol(-1), -135.3 +/- 1 J mol(-1) K(-1); 1b, (12.7 +/- 0.2) x 10(3) L mol(-1) s(-1), 13.26 +/- 0.5 kJ mol(-1), -121.9 +/- 2 J mol(-1) K(-1); 1c, (98.9 +/- 1.4) x 10(3) L mol(-1) s(-1), 12.50 +/- 0.6 kJ mol(-1), -107.4 +/- 2 J mol(-1) K(-1); 2a, (1.62 +/- 0.02) x 10(3) L mol(-1) s(-1), 17.47 +/- 0.4 kJ mol(-1), -124.9 +/- 1 J mol(-1) K(-1); 2b, (24.8 +/- 0.2) x 10(3) L mol(-1) s(-1), 11.35 +/- 0.4 kJ mol(-1), -122.7 +/- 1 J mol(-1) K(-1); 2c, (850 +/- 120) x 10(3) L mol(-1), s(-1), 9.87 +/- 0.8 kJ mol(-1), -98.3 +/- 4 J mol(-1) K(-1). For complexes la and 2a, the volumes of activation were measured and are -20.9 +/- 1.2 cm3 mol(-1) (332.0 K) and -17.2 +/- 1.0 cm3 mol(-1) (330.8 K), respectively. The second-order kinetics and the large negative values of the entropies and volumes of activation point to a limiting associative, A, exchange mechanism. The reactivity of CO exchange follows the increasing trans effect of the halogens (Cl < Br < I), and this is observed on both metal centers. For the same halogen, the rhodium complex is more reactive than the iridium complex. This reactivity difference between rhodium and iridium is less marked for chloride (1.5: 1) than for iodide (8.6:1) at 298 K.  相似文献   

10.
Derivatives of DisilanesXme 2SiSime 2 X withX=H, F, Cl, Br, J, Ome, Ph, Sme, and Si2 me 5Sme were prepared, some of them for the first time, and investigated by spectroscopic methods. The hitherto unknown group of sulphur compounds of disilanes show similarities with the corresponding polysilane (Si n me 2n+2,n=Si+S) in their UV-, IR and Raman spectra, resulting from the similar mass of sulphur and silicon.  相似文献   

11.
The infrared and Raman vibrational spectra of X3MCo(CO)4 compounds (M = Si, Ge, Sn and X = Cl, Br, I) including depolarization measurements are presented. These spectra result in complete vibrational assignments which are different from those reported previously.  相似文献   

12.
Halogeno-Bridged Heteronuclear Metal Atom Clusters of the Three Types Re2(CO)4L2(μ-X)2(μ-Y) (L = (C6H5)3P; X = Br, I; Y = GaRe(CO)4ax-L), Re2(CO)6L2(μ-X) (μ-GaX2) (X = I), and Re3(CO)9L3 (μ-X)33-Y) (X = Cl) The title compounds of the both types Re2(CO)4L(μ-X)2(μ-Y) [L = (C6H5)3P; X = Br, I; Y = GaRe(CO)4ax-L] and Re3(CO)9L3(μ-X)33-Y) (X = Cl) were prepared by the reaction of GaX3 (X = Cl, Br, I) and Re2(CO)8(ax-L)2 in boiling mesitylene solution. The obtained substance Re2(CO)4L2(μ-I)2(μ-Y) and carbon monoxide gave the compound of the third type Re2(CO)6L2(μ-I)(μ- GaI2). The last-named single iodo-bridged dirhenium cluster could be therefore a precursor complex of the double iodo-bridged compound. The four diamagnetic substances were characterized by 31P n.m.r. spectroscopy and their molecular structures were acertained by X-ray measurements. The result of the single crystal X-ray analysis of Re2(CO)4L2(μ-Br)2 [μ-GaRe(CO)4ax-L], a bridged coordination octahedron pair with a common face, and that of the edge-bridged pair Re2(CO)6L2(μ-I)(μ-GaI2) each possessing a Re? Re bond are especially treated in the present work.  相似文献   

13.
Perfluormethyl-Element-Ligands. XL. Chromium and Tungsten Pentacarbonyl Complexes of Bis(trifluoromethyl)phosphanes of the Type (F3C)2PX′ (X′ = H, F, Cl, Br, I, NEt2) The complexes M(CO)5P(CF3)2X′ (M = Cr, W; X′ = H, F, Cl, Br, I) are obtained in preparative amounts (yields between 15 and 42%) by reacting the ligands (F3C)2PX′ with the adducts “M(CO)5CH2Cl2”, photochemically generated from M(CO)6 in methylene chloride. The corresponding derivatives of the aminophosphane Et2NP(CF3)2 can be produced in good yields (60–75%) using the THF complexes M(CO)5THF as precursors. The spectroscopic data (MS, IR, NMR) of the new compounds are reported. The CO valence frequencies v(CO) and the coordination shifts Δδ prove the high π-acidity of the ligands (F3C)2PX′.  相似文献   

14.
The ligand dependence of metal-metal bonding in the d(3)d(3) face-shared M(2)X(9)(n-) (M(III) = Cr, Mo, W; M(IV) = Mn, Tc, Re; X = F, Cl, Br, I) dimers has been investigated using density functional theory. In general, significant differences in metal-metal bonding are observed between the fluoride and chloride complexes involving the same metal ion, whereas less dramatic changes occur between the bromide and iodide complexes and minimal differences between the chloride and bromide complexes. For M = Mo, Tc, and Re, change in the halide from F to I results in weaker metal-metal bonding corresponding to a shift from either the triple metal-metal bonded to single bonded case or from the latter to a nonbonded structure. A fragment analysis performed on M(2)X(9)(3-) (M = Mo, W) allowed determination of the metal-metal and metal-bridge contributions to the total bonding energy in the dimer. As the halide changes from F to I, there is a systematic reduction in the total interaction energy of the fragments which can be traced to a progressive destabilization of the metal-bridge interaction because of weaker M-X(bridge) bonding as fluoride is replaced by its heavier congeners. In contrast, the metal-metal interaction remains essentially constant with change in the halide.  相似文献   

15.
Magnetic measurements onHeusler alloys (Co, Ni)2 XY are performed. The transitions from ferromagnetic to paramagnetic behaviour in some systems are of special interest.

Mit 4 Abbildungen  相似文献   

16.
Preparation and Vibrational Spectra of trans-[Pt(acac)2X2] (X ? Cl, Br, I, SCN, SeCN, N3) By electrolytical oxidation of [Pt(acac)2] in presence of chloride or bromide, dissolved in dichlormethane, trans-[Pt(acac)2X2], X ? Cl, Br, are formed. On treatment of trans-[Pt(acac)2I2] with silver pseudohalides trans-[Pt(acac)2X2], X ? SCN, SeCN, N3, are obtained. Beside the nearly persistent bands of coordinated acetylacetonate in the Raman spectra the intensive and sharp symmetric, in the IR spectra the corresponding antisymmetric stretching vibration of the X? Pt? X axis is observed. The observance of the rule of mutual exclusion proves the complexes to belong to point group D2h. From the resonance Raman spectrum of trans-[Pt(acac)2I2] for vs (Pt? I), Ag, the harmonic frequency ω1 = 142.45 cm?1 and the inharmonicity constant x11 = 0.48 cm?1 is calculated. In the Raman spectrum of trans-[Pt(acac)2Cl2] vs (Pt? Cl) is splitted by the isotops 35Cl/37Cl into the triplet 340, 335, 330 cm?1 giving the force constant fPtCl = 2.01 N/cm.  相似文献   

17.
Preparation and Spectroscopic Characterization of the Fluorophosphonium Salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) The preparation of the fluorophosphonium salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) by methylation of the corresponding thiophosphorylhalides in the system CH3F/SO2/MF5 (M = As, Sb) is reported. The new salts are characterized by their vibrational and NMR spectra.  相似文献   

18.
Ion-molecule clusters of the heavier halide anions X-.CO(2) (X=Cl-,Br-,I-) with CO2 have been studied by gas phase infrared photodissociation spectroscopy, using Ar evaporation from the complexes X-.CO2.Ar upon infrared excitation. We observe that the asymmetric stretch vibrational mode of the CO(2) molecule is red-shifted from the frequency of free CO2, with the red-shift increasing toward the lighter halide ions. A similar trend is repeated in the region of the Fermi resonance of the combination bands of the asymmetric stretch vibration with two quanta of the bending vibration and the symmetric stretch vibration. We discuss our findings in the framework of ab initio and density functional theory calculations.  相似文献   

19.
Preparation and Characterization of [Pt(mal)2]2? and trans-[Pt(mal)2X2]2? (X = Cl, Br, I, SCN) By twofold treatment of K2[PtCl4] with potassium hydrogen malonate in a queous solution the yellow K2[Pt(mal)2] · H2O is obtained. After extraction with tetrabutylammonium ions into dichloromethane by oxidative addition at ?90°C the PtIV complexes [Pt(mal)2X2]2?, X = Cl, Br, I, SCN, are formed. The SCN ligands are coordinated to Pt via S. The IR and Raman spectra are discussed and assigned.  相似文献   

20.
Synthesis, Crystal Structure and Spectroscopic Properties of the Cluster Anions [(Mo6Br )X ]2? with Xa = F, Cl, Br, I The tetrabutylammonium (TBA), tetraphenylphosphonium (TPP) and tetraphenylarsonium (TPAs) salts of the octa-μ3-bromo-hexahalogeno-octahedro-hexamolybdate(2?) anions [(Mo6Br)X]2? (Xa = F, Cl, Br, I) are synthesized from solutions of the free acids H2[(Mo6Br)X] · 8 H2O with Xa = Cl, Br, I. The crystal structures show systematic stretchings in the Mo? Mo bond length and a slight compression of the Bri8 cube in the Fa to Ia series. The cations do not change much. The i.r. and Raman spectra show at 10 K almost constant frequencies of the (Mo6Bri8) cluster vibrations, whereas all modes with Xa ligand contribution are characteristically shifted. The most important bands are assigned by polarization measurements and the force constants are derived from normal coordinate analysis. The 95Mo nmr signals are shifted to lower field with increasing electronegativity of the Xa ligands. The fluorine compound shows a sharp 19F nmr singlet at ?184.5 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号