首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To understand the role of pi-electron delocalization in determining the conformation of the NBA (Ph-N==CH-Ph) molecule, the following three LMO (localized molecular orbital) basis sets are constructed: a LFMO (highly localized fragment molecular orbital), an NBO (natural bond orbital), and a special NBO (NBO-II) basis sets, and their localization degrees are evaluated with our suggesting index D(L). Afterward, the vertical resonance energy DeltaE(V) is obtained from the Morokuma's energy partition over each of three LMO basis sets. DeltaE(V) = DeltaE(H) (one electron energy) + DeltaE(two) (two electron energy), and DeltaE(two) = DeltaE(Cou) (Coulomb) + DeltaE(ex) (exchange) + DeltaE(ec) (or SigmaDeltaE(n)) (electron correction). DeltaE(H) is always stabilizing, and DeltaE(Cou) is destabilizing for all time. In the case of the LFMO basis set, DeltaE(Cou) is so great that DeltaE(two) > |DeltaE(H)|. Therefore, DeltaE(V) is always destabilizing, and is least destabilizing at about the theta = 90 degrees geometry. Of the three calculation methods such as HF, DFT, and MPn (n = 2, 3, and 4), the MPn method provides DeltaE(V) with the greatest value. In the case of the NBO basis set, on the contrary, DeltaE(V) is stabilizing due to DeltaE(Cou) being less destabilizing, and it is most stabilizing at a planar geometry. The LFMO basis set has the highest localization degree, and it is most appropriate for the energy partition. In the NBA molecule, pi-electron delocalization is destabilization, and it has a tendency to distort the NBA molecular away from its planar geometry as far as possible.  相似文献   

2.
The adsorption and dissociation of thiophene on the MoP(001), gamma-Mo(2)N(100), and Ni(2)P(001) surfaces have been computed by using the density functional theory method. It is found that thiophene adsorbs dissociatively on MoP(001), while nondissociatively on gamma-Mo(2)N(100) and Ni(2)P(001). On MoP(001), the dissociation of the C-S bonds is favored both thermodynamically and kinetically, while the break of the first C-S bond on gamma-Mo(2)N(100) has an energy barrier of 1.58 eV and is endothermic by 0.73 eV. On Ni(2)P(001) there are Ni(3)P(2)- and Ni(3)P-terminated surfaces. On the Ni(3)P(2)-terminated surface, the dissociation of the C-S bonds of adsorbed thiophene is endothermic, while it is exothermic on the Ni(3)P-terminated surface.  相似文献   

3.
In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc(3)N@I(h)-C(80) and its D(5h) counterpart Sc(3)N@D(5h)-C(80) , and the (bio)chemically relevant lutetium- and gadolinium-based M(3)N@I(h)/D(5h)-C(80) EMFs (M = Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels-Alder cycloaddition of s-cis-1,3-butadiene on all the different bonds of the I(h)-C(80) and D(5h)-C(80) cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc(3)N@C(80). Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D(5h)-b, which is the most similar to the unique [5,6] bond type in the icosahedral cage, I(h)-a, is the most reactive bond in M(3)N@D(5h)-C(80) regardless of M. Sc(3)N@C(80) and Lu(3)N@C(80) give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M = Gd, as previously found in similar metallofullerenes. Calculations also show that the D(5h) isomer is more reactive from the kinetic point of view than the I(h) one in all cases which is in good agreement with experiments.  相似文献   

4.
本文研究了在不同pH值下,半胱氨酸与CuCl_2络合生成的三种不同的络合物。在酸性溶液中,半胱氨酸与CuCl_2通过络合反应、自氧化还原反应,最后生成带氯桥的络合物[Cu_2(Ⅰ)Cl_2(cysH_2)]的白色粉末,(cysH_2为半胱氨酸)。在碱性溶液中,若反应在空气中进行,半胱氨酸与CuCl_2经氧化还原反应,结果生成天蓝色络合物(Cu_2(Ⅱ)(cyss)_2],(cyss~(2-)为胱氨酸根);若反应在绝氧条件下进行,它们则先络合,然后二聚成黑色络合物[Cu_2(Ⅱ)(cys)_2·6H_2O)。根据化学分析以及IR和ESR谱的研究,推测了这三种络合物的可能结构。  相似文献   

5.
Gallium and germanium porphyrin complexes in the lowest excited triplet (T1) state have been studied by time-resolved electron spin resonance (TRESR). It is found that for Ge(TPP)(OH)2 (TPP = dianion of tetraphenylporphyrin) intersystem crossing (ISC) from the lowest excited singlet (S1) state to the T1x and T1y sublevels is faster than that to the T1z sublevel (T1x, T1y, and T1z are sublevels of the T1 state), while the ISC of ZnTPP and Ga(TPP)(OH) is selective to the T1z sublevel. This is interpreted by a weak interaction between the dpi orbital of germanium and LUMO (eg) of the porphyrin ligand, resulting in small spin-orbit coupling (SOC). The interpretation is supported by molecular orbital calculations. The ISC of Ge(OEP)(OH)2 (OEP = dianion of octaethylporphyrin) and Ge(Pc)(OH)2 (Pc = dianion of tetra-tert-butylphthalocyanine) is found to be selective to the T1z sublevel in contrast to Ge(TPP)(OH)2. This dependence on the porphyrin ligand is reasonably explained by a difference between the 3(a(1u)eg) (the OEP and Pc complexes) and 3(a(2u)eg) (the TPP complex) configurations. This is the first observation of a difference in selective ISC between the 3(a(1u)eg) and 3(a(2u)eg) configurations. The TRESR spectrum of Ge(TPP)Br2 is different from those of Ge(TPP)Cl2 and Ge(TPP)(OH)2, and is interpreted by SOC between the T1 and T2 states. From ESR parameters the square of the coefficient of the eg orbital on bromine is evaluated as 0.018 in the T1 state.  相似文献   

6.
The structure and aromaticity of a royal crown-shaped molecule Li(3)-N(3)-Be are studied at the CCSD(T)/aug-cc-pVDZ level. This molecule is a charge-separated system and can be denoted as Li(3) (2+)N(3) (3-)Be(+). It is found that the Li(3) (2+) ring exhibits aromaticity mainly because the Li(3) (2+) ring can share the pi-electron with the N(3) (-3) ring. The 4n+2 electron counter rule can be satisfied for the Li(3) (2+) subunit if the shared pi valence electron of N(3) (3-) subunit is also taken into account. This new knowledge on aromaticity of a ring from the interactions between subunits is revealed first time in this paper. Li(3)-N(3)-Be can be also regarded as a molecule containing two superatoms (Li(3) and N(3)), which may be named as a "superomolecule." Li(3)-N(3)-Be is a new metal-nonmetal-metal type sandwich complex. The N(3) (3-) trianion in the middle repulses the electron clouds of the two metal subunits (mainly to the Li(3) superatom) to generate an excess electron, and thus Li(3)-N(3)-Be is also an electride. This phenomenon of the repulsion results in: (a) the HOMO energy level increased, (b) the electron cloud in HOMO distended, (c) the area of the negative NICS value extended, and (d) the VIE value lowered. So the superomolecule Li(3)-N(3)-Be is not only a new metal-nonmetal-metal type sandwich complex but also a new type electride, which comes from the interaction between the alkali superatom (Li(3)) and the nonmetal superatom (N(3)).  相似文献   

7.
Beams of hyperthermal K atoms cross beams of the oriented haloforms CF(3)H, CCl(3)H, and CBr(3)H, and transfer of an electron mainly produces K(+) and the X(-) halide ion which are detected in coincidence. As expected, the steric asymmetry of CCl(3)H and CBr(3)H is very small and the halogen end is more reactive. However, even though there are three potentially reactive centers on each molecule, the F(-) ion yield in CF(3)H is strongly dependent on orientation. At energies close to the threshold for ion-pair formation ( approximately 5.5 eV), H-end attack is more reactive to form F(-). As the energy is increased, the more productive end switches, and F-end attack dominates the reactivity. In CF(3)H near threshold the electron is apparently transferred to the sigma(CH) antibonding orbital, and small signals are observed from electrons and CF(3)(-) ions, indicating "activation" of this orbital. In CCl(3)H and CBr(3)H the steric asymmetry is very small, and signals from free electrons and CX(3)(-) ions are barely detectable, indicating that the sigma(CH) antibonding orbital is not activated. The electron is apparently transferred to the sigma(CX) orbital which is believed to be the LUMO. At very low energies the proximity of the incipient ions probably determines whether salt molecules or ions are formed.  相似文献   

8.
Superoxide reductases (SORs) belong to a new class of metalloenzymes that degrade superoxide by reducing it to hydrogen peroxide. These enzymes contain a catalytic iron site that cycles between the Fe(II) and Fe(III) states during catalysis. A key step in the reduction of superoxide has been suggested to involve HO(2) binding to Fe(II), followed by innersphere electron transfer to afford an Fe(III)-OO(H) intermediate. In this paper, the mechanism of the superoxide-induced oxidation of a synthetic ferrous SOR model ([Fe(II)(S(Me2)N(4)(tren))](+) (1)) to afford [Fe(III)(S(Me2)N(4)(tren)(solv))](2+) (2-solv) is reported. The XANES spectrum shows that 1 remains five-coordinate in methanolic solution. Upon reaction of 1 with KO(2) in MeOH at -90 degrees C, an intermediate (3) is formed, which is characterized by a LMCT band centered at 452(2780) nm, and a low-spin state (S = 1/2), based on its axial EPR spectrum (g(perpendicular) = 2.14; g(parallel) = 1.97). Hydrogen peroxide is detected in this reaction, using both (1)H NMR spectroscopy and a catalase assay. Intermediate 3 is photolabile, so, in lieu of a Raman spectrum, IR was used to obtain vibrational data for 3. At low temperatures, a nu(O-O) Fermi doublet is observed in the IR at 788(2) and 781(2) cm(-)(1), which collapses into a single peak at 784 cm(-1) upon the addition of D(2)O. This vibrational peak diminishes in intensity over time and essentially disappears after 140 s. When 3 is generated using an (18)O-labeled isotopic mixture of K(18)O(2)/K(16)O(2) (23.28%), the vibration centered at 784 cm(-1) shifts to 753 cm(-1). This new vibrational peak is close to that predicted (740 cm(-1)) for a diatomic (18)O-(18)O stretch. In addition, a nu(O-O) vibrational peak assigned to free hydrogen peroxide is also observed (nu(O-O) = 854 cm(-1)) throughout the course of the reaction between Fe(II)-1 and superoxide and is strongest after 100 s. XAS studies indicate that 3 possesses one sulfur scatterer at 2.33(2) A and four nitrogen scatterers at 2.01(1) A. Addition of two Fe-O shells, each containing one oxygen, one at 1.86(3) A and one at 2.78(3) A, improved the EXAFS fits, suggesting that 3 is an end-on peroxo or hydroperoxo complex, [Fe(III)(S(Me2)N(4)(tren))(OO(H))](+). Upon warming above -50 degrees C, 3 is converted to 2-MeOH. In methanol and methanol:THF (THF = tetrahydrofuran) solvent mixtures, 2-MeOH is characterized by a LMCT band at lambda(max) = 511(1765) nm, an intermediate spin-state (S = 3/2), and, on the basis of EXAFS, a relatively short Fe-O bond (assigned to a coordinated methanol or methoxide) at 1.94(10) A. Kinetic measurements in 9:1 THF:MeOH at 25 degrees C indicate that 3 is formed near the diffusion limit upon addition of HO(2) to 1 and converts to 2-MeOH at a rate of 65(1) s(-1), which is consistent with kinetic studies involving superoxide oxidation of the SOR iron site.  相似文献   

9.
The electrical conductances of dithiolates of polyacene (PA(n)DTs) and polyphenanthrene (PPh(n)DTs), which are typical carbon ladder compounds, are calculated by means of the Landauer formulation combined with density functional theory, where n is the number of benzene rings involved. Surface Green function used in the Landauer formulation is calculated with the Slater-Koster parameters. Attention is turned to the wire-length dependence of the conductances of PA(n)DTs and PPh(n)DTs. The damping of conductance of PA(n)DTs is much smaller than that of PPh(n)DTs because of the small HOMO-LUMO gaps of PA(n)DTs. PA(n)DTs are thus good molecular wires for nanosized electronic devices. Conductance oscillation is found for both molecular wires when n is less than 7. The electrical conductance is enhanced in PA(n)DTs with even-numbered benzene rings, whereas it is enhanced in PPh(n)DTs with odd-numbered benzene rings. The observed conductance oscillation of PA(n)DTs and PPh(n)DTs is due to the oscillation of orbital energy and electron population. Other pi-conjugated oligomers (polyacetylene-DT, oligo(thiophene)-DT, oligo(meso-meso-linked zinc(II) porphyrin-butadiynylene)-DT, oligo(p-phenylethynylene)-DT, and oligo(p-phenylene)-DT) are also studied. In contrast to PA(n)DTs and PPh(n)DTs, the five molecular wires show ordinary exponential decays of conductance.  相似文献   

10.
Infrared spectra of partially deuterated water trimers have been investigated. It is found that HDO(H(2)O)(2) has a single, bound OD stretching fundamental, (HDO)(2)H(2)O two bound OD stretches. (HDO)(3) has a single, bound OD stretch and (H(2)O)(3) has a pair of bound OH stretches. Ab initio and discrete Fourier transform (DFT) calculations predict that the water trimer has C(1) symmetry with six different, isoenergetic minima. These calculations consequently give three numerically different OD stretches for HDO(H(2)O)(2), six for (HDO)(2)H(2)O, three for (HDO)(3), and three bound OH stretches for (H(2)O)(3). The connection between the observations and the pseudorotation of the trimer is discussed with the help of Wales' pseudorotation model. It is found that pseudorotation is sufficiently fast to average the effective symmetry of the A(3) trimer to C(3h) and to eliminate the difference between the different ab initio minima for A(2)B. The only exception is (H(2)O)(3) where the splitting between the different bound OH stretches is largest. Here a doublet is observed due to incomplete averaging. DFT calculations indicate that the D-bonded form of HDO(H(2)O)(2) is between 50 and 60 cm(-1) more stable than the H-bonded form. The energy difference is determined by differences in zero point vibration energy of intermolecular librations of the two forms. Attempts to measure the energy difference indicate that the energy difference is larger, of the order of 100 cm(-1).  相似文献   

11.
The energetics of the (1)CH(2) + C(2)H(2) --> H + C(3)H(3) reaction are accurately calculated using an extrapolated coupled-cluster/complete basis set (CBS) method based on the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. The reaction enthalpy (0 K) is predicted to be -20.33 kcal/mol. This reaction has no classical barrier in either the entrance or exit channel. However, there are several stable intermediates-cyclopropene (c-C(3)H(4)), allene (CH(2)CCH(2)), and propyne (CH(3)CCH)-along the minimum energy path. These intermediates with zero-point energy corrections lie below the reactants by 87.11 (c-C(3)H(4)), 109.69 (CH(2)CCH(2)), and 110.78 kcal/mol (CH(3)CCH). The vibrationally adiabatic ground-state (VAG) barrier height for c-C(3)H(4) isomerization to allene is obtained as 45.2 kcal/mol, and to propyne as 37.2 kcal/mol. In addition, the (1)CH(2) + C(2)H(2) reaction is investigated utilizing the dual-level "scaling all correlation" (SAC) ab initio method of Truhlar et al., i.e., the UCCSD(SAC)/cc-pVDZ theory. Results show that the reaction occurs via long-lived complexes. The lifetime of the cyclopropene intermediate is obtained as 3.2 +/- 0.4 ps. It is found that the intermediate propyne can be formed directly from reactants through the insertion of (1)CH(2) into a C-H bond of C(2)H(2). However, compared to the major mechanism in which the propyne is produced through a ring-opening of the cyclopropene complex, this reaction pathway is much less favorable. Finally, the theoretical thermal rate constant exhibits a negative temperature dependence, which is in excellent agreement with the previous results. The temperature dependence is consistent with the earlier RRKM results but weaker than the experimental observations at high temperatures.  相似文献   

12.
Dasgupta PK  Huang H  Zhang G  Cobb GP 《Talanta》2002,58(1):153-164
A simple, fast and sensitive light-emitting diode (LED)-based photometric method for the differential determination of ppb-ppm levels of As(III) and As(V) in potable water in the presence of ppm levels of phosphate was developed. The detection chemistry is based on the well-known formation of arsenomolybdate, followed by reduction to heteropoly blue. The front-end of the measurement system is configured to selectively retain P(V) and As(V), based on the considerable difference of the pK(a) of the corresponding acids relative to As(III). Thus, it is As(III) that is injected into the medium, oxidized in-line with KBrO(3) to As(V) and forms Mo-blue that is detected by an LED-based detector. Only As(III) is measured if the sample is injected as such; if all As in the sample is prereduced to As(III) (by the addition of cysteine, in a provided in-line arrangement), the system measures As(V)+As(III). In the present form, limit of detection (LOD) (S/N=3) is less than 8 mug l(-1) As, and the linear range extends to 2.4 mg l(-1). Potential interference from dissolved silica and Fe(III) is eliminated by the addition of NaF to the sample.  相似文献   

13.
Suresh CH  Koga N 《Inorganic chemistry》2002,41(6):1573-1578
Values of the molecular electrostatic potential minimum (V(min)) corresponding to the lone pair region of several substituted phosphine ligands (PR(3)) have been determined at the DFT level. The V(min) value is proposed as a quantitative measure of the electronic effect of the PR(3) ligands. Good linear correlation between V(min) and Tolman electronic parameter of PR(3) has been obtained. V(min) is also proportional to the pK(a) values of the conjugate acids of PR(3), viz., [PR(3)H](+). Further, the DeltaE values of the reaction Ni(CO)(3) + PR(3) --> Ni(CO)(3)PR(3) and ScH(3) + PR(3) --> ScH(3)PR(3) are also linearly proportional to the V(min) values. However, if there is a strong metal to phosphorus pi-back-bonding, the DeltaE and V(min) do not fit to a line. It is also found that the standard reduction potential as well as the enthalpy change corresponding to the electrochemical couple eta-Cp(CO)(PR(3))(COMe)Fe(+)/eta-Cp(CO)(PR(3))(COMe)Fe(0) is linearly proportional to the V(min) values of PR(3). These correlations suggest that V(min) is a quantitative measure of the sigma-donating ability of the phosphine. It is hoped that, in phosphine-metal coordination chemistry, the V(min) based electronic parameter could be more advantageous than nu-CO and pK(a) based electronic parameters as it solely represents the inherent electronic property of the ligand.  相似文献   

14.
12-钼磷酸与γ-Al2O3载体的相互作用   总被引:2,自引:0,他引:2  
应用酸碱滴定、X射线衍射(XRD)、激光拉曼(LRS)和顺磁共振(EPR)等方法研究了磷钼酸(PMo_(12))与γ-Al_2O_3载体间的相互作用.结果表明,PMo_(12)在γ-Al_2O_3上随负载量增加出现三种不同的分散状态,据此提出了PMo_(12)在γ-Al_2O_3上的铺展模型.  相似文献   

15.
[reaction: see text] The reaction of CH(4) with CO(2) has been performed in anhydrous acids using VO(acac)(2) and K(2)S(2)O(8) as promoters. NMR analysis establishes that the primary product is a mixed anhydride of acetic acid and the acid solvent. In sulfuric acid, the overall reaction is CH(4) + CO(2) + SO(3) --> CH(3)C(O)-O-SO(3)H. Hydrolysis of the mixed anhydride produces acetic acid and the solvent acid. When trifluoroacetic acid is the solvent, acetic acid is primarily formed via the reaction CH(4) + CF(3)COOH --> CH(3)COOH + CHF(3).  相似文献   

16.
The reaction of the open bioctahedral form of Re(2)Cl(4)(&mgr;-dppm)(2)(CO)(CNXyl) (1), where XylNC = 2,6-dimethylphenyl isocyanide, with TlO(3)SCF(3) in the presence of acetonitrile proceeds with retention of stereochemistry at the dirhenium unit to afford the complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(NCCH(3))]O(3)SCF(3) (3). The single-crystal X-ray structure determination of 3 shows that a Re&tbd1;Re bond is retained (the Re-Re distance is 2.378(3) ?) and that it is the chloride ligand trans to the XylNC ligand of 1 which is labilized. Complex 1 reacts with TlO(3)SCF(3) in a noncoordinating solvent to produce the unsymmetrical complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)]O(3)SCF(3) (2), through loss of this same chloride ligand of 1 and CO transfer from the adjacent Re center. The acetonitrile ligand of 3 is very labile and is readily displaced by XylNC and t-BuNC, with retention of stereochemistry, to produce complexes of stoichiometry [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(CNR)]O(3)SCF(3) (R = Xyl, 4a; R = t-Bu, 4b). In a noncoordinating solvent, the nitrile ligand of 3 is lost and 2 is formed following CO transfer; this conversion is reversed upon the reaction of 2 with acetonitrile. When 3 is treated with CO, the acetonitrile ligand is again displaced, but in this instance the reaction is accompanied by a structure change to produce an edge-sharing bioctahedral complex of the type [Re(2)(&mgr;-CO)(&mgr;-Cl)(&mgr;-dppm)(2)Cl(2)(CO)(CNXyl)]O(3)SCF(3) (5).  相似文献   

17.
Multireference configuration interaction (MRCI) calculations were performed for vertical excitation energies and potential curves of N(2)O(4) in D(2h) symmetry using the TZVPP basis set with diffuse functions on the nitrogens. The strong absorption of N(2)O(4) around 185 nm is assigned to the transition from the ground state to 1?(1)B(1u) (σ(O)→σ(?) (N-N)) rather than 1?(1)B(2u) (π(O)→π(?) (NO(2) ),n→σ(?) (N-N)), as previously assumed. (N(2)O(4) is placed in the yz-plane, with N-N along z.) Transition to 1?(1)B(1u) is calculated to have an oscillator strength f=0.71 and is z-polarized, in agreement with the experimental observations. Another state, 2?(1)B(2u), lies close by, however, at a much lower f-value. The weak absorption around 340 nm is assigned to 1?(1)B(3u). Excitation to 1?(1)B(2u) is calculated at 227 nm. There is no clear assignment of a state for the observed shoulder around 260 nm. TD-DFT (time-dependent density functional theory) vertical excitation energies are close to MRCI values. MRCI singlet and triplet potential curves for the dissociation N(2)O(4)→2NO(2), combined with a table of NO(2) states correlating with those of N(2)O(4), indicate possible products of photodissociation at various wavelengths. The extensive literature on the photodissociation of N(2)O(4) is reviewed. DFT geometry optimizations have been performed on low-lying singlet and triplet states.  相似文献   

18.
A library of inorganic complexes with reversible redox chemistry and/or the ability to catalyze homogeneous oxidations by peroxides, including but not limited to combinations of polyoxometalate anions and redox-active cations, was constructed. Evaluation of library members for the ability to catalyze aerobic sulfoxidation (O(2) oxidation of the thioether, 2-chloroethyl ethyl sulfide, CEES) led to the discovery that a combination of HAuCl(4) and AgNO(3) forms a catalyst that is orders of magnitude faster than the previously most reactive such catalysts (Ru(II) and Ce(IV) complexes) and one effective at ambient temperature and 1 atm air or O(2). If no O(2) but high concentrations of thioether are present, the catalyst is inactivated by an irreversible formation of colloidal Au(0). However, this inactivation is minimal in the presence of O(2). The stoichiometry is R(2)S + (1)/(2)O(2) --> R(2)S(O), a 100% atom efficient oxygenation, and not oxidative dehydrogenation. However, isotope labeling studies with H(2)(18)O indicate that H(2)O and not O(2) or H(2)O(2) is the source of oxygen in the sulfoxide product; H(2)O is consumed and subsequently regenerated in the mechanism. The rate law evaluated for every species present in solution, including the products, and other kinetics data, indicate that the dominant active catalyst is Au(III)Cl(2)NO(3)(thioether) (1); the rate-limiting step involves oxidation of the substrate thioether (CEES) by Au(III); reoxidation of the resulting Au(I) to Au(III) by O(2) is a fast subsequent step. The rate of sulfoxidation as Cl is replaced by Br, the solvent kinetic isotope effect (k(H)(2)(O)/k(D)(2)(O) = 1.0), and multiparameter fitting of the kinetic data establish that the mechanism of the rate-limiting step involves a bimolecular attack of CEES on a Au(III)-bound halide and it does not involve H(2)O. The reaction is mildly inhibited by H(2)O and the CEESO product because these molecules compete with those needed for turnover (Cl(-), NO(3)(-)) as ligands for the active Au(III). Kinetic studies using DMSO as a model for CEESO enabled inhibition by CEESO to be assessed.  相似文献   

19.
Tris(bipyridine)ruthenium(II) is used as a templating agent to insert palladium(II) into three-dimensional oxalate-based networks. The templated-assembly of [Ru(bpy)(3)][Pd(2)(ox)(3)] (Pd(2)) and [Ru(bpy)(3)][PdMn(ox)(3)] (PdMn) is described. The latter compound is structurally characterized by powder X-ray diffraction and X-ray absorption spectroscopy. These techniques reveal an unusual 6-fold oxygen environment around the Pd(II) atoms with two short (2.02 Angstrom) and four long (2.17 Angstrom) Pd-O distances. As stated by magnetometry, this environment is associated with a triplet ground state (S = 1) of the palladium(II) ion: when the temperature is decreased, the chiMT product shows a monotonous decrease from 5.54 cm(3) K mol(-1) at 300 K, a value which is slightly lower than the one expected for independent paramagnetic Pd(II) (S = 1, g = 2) and Mn(II) (S = 5/2, g = 2) ions. This thermal variation is due to antiferromagnetic exchange interactions between the two spin bearers. Nevertheless, no long-range magnetic order is detected down to 2 K. These results are confirmed by an analysis of the [MII(C(2)O(4))(3)](4-) (M = Ni, Pd, Pt) complex and of a [Pd(II){mu-(C(2)O(4))Mn(II)(OH(2))(4)}(3)](2+) tetranuclear model using density functional theory.  相似文献   

20.
The synthesis of CF(3)OC(O)OOC(O)F is accomplished by the photolysis of a mixture of (CF(3)CO)(2)O, FC(O)C(O)F, CO, and O(2) at -15 degrees C using a low-pressure mercury lamp. The new peroxide is obtained in pure form in low yield after repeated trap-to-trap condensation and is characterized by NMR, IR, Raman, and UV spectroscopy. Geometrical parameters were studied by ab initio methods [B3LYP/6-311+G(d)]. At room temperature, CF(3)OC(O)OOC(O)F is stable for many days in the liquid or gaseous state. The melting point is -87 degrees C, and the boiling point is extrapolated to 45 degrees C from the vapor pressure curve log p = 8.384 - 1715/T (p/mbar, T/K). A possible mechanism for the formation of CF(3)OC(O)OOC(O)F is discussed, and its properties are compared with those of related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号