首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polymers for microencapsulation of drugs   总被引:3,自引:0,他引:3  
Drug delivery has become increasingly important mainly due to the awareness of the difficulties associated with a variety of old and new drugs. Of the many polymeric drug delivery systems, biodegradable polymers have been used widely as drug delivery systems because of their biocompatibility and biodegradability. The majority of biodegradable polymers have been used in the form of microparticles, from which the incorporated drug is released to the environment in a controlled manner. The factors responsible for controlling the drug release rate are physicochemical properties of drugs, degradation rate of polymers, and the morphology and size of microparticles. This review discusses the conventional and recent technologies for microencapsulation of the drugs using biodegradable polymers. In addition, this review presents characteristics and degradation behaviors of biodegradable polymers which are currently used in drug delivery.  相似文献   

2.
Thermally sensitive polymeric nanocarriers were developed to optimize the release profile of encapsulated compounds to improve treatment efficiency. However, when referring to thermally sensitive polymeric nanocarriers, this usually means systems fabricated from lower critical solution temperature (LCST) polymers, which have been intensively studied. To extend the field of thermally sensitive polymeric nanocarriers, we for the first time fabricated a polymeric drug delivery system having an upper critical solution temperature (UCST) of 43 °C based on an amphiphilic polymer poly(AAm‐co‐AN)‐g‐PEG. The resulting polymeric micelles could effectively encapsulate doxorubicin and exhibited thermally sensitive drug release both in vitro and in vivo. A drastically improved anticancer efficiency (IC50 decreased from 4.6 to 1.6 μg mL?1, tumor inhibition rate increased from 55.6 % to 92.8 %) was observed. These results suggest that UCST‐based drug delivery can be an alternative to thermally sensitive LCST‐based drug delivery systems for an enhanced antitumor efficiency.  相似文献   

3.
4.
5.
Dendrimers and hyperbranched polymers are a relatively new class of materials with unique molecular architectures and dimensions in comparison to traditional linear polymers. This review details recent notable advances in the application of these new polymers in terms of the development of new polymeric delivery systems. Although comparatively young, the developing field of hyperbranched drug delivery devices is a rapidly maturing area and the key discoveries in drug-conjugate systems amongst others are highlighted. As a consequence of their ideal hyperbranched architectures, the utilisation of host-guest chemistries in dendrimers has been included within the scope of this review.  相似文献   

6.
In this work, the technology of nano‐ and micro‐scale particle reinforcement concerning various polymeric fiber‐reinforced systems including polyamides (PAs), polyesters, polyurethanes (PUs), polypropylenes (pps), and high‐performance/temperature engineering polymers such as polyimide (PI), poly(ether ether ketone) (PEEK), polyarylacetylene (PAA), and poly p‐phenylene benzobisoxazole (PBO) is reviewed. When the diameters of polymer fiber materials are shrunk from micrometers to submicrons or nanometers, there appear several unique characteristics such as very large surface area to volume ratio (this ratio for a nanofiber can be as large as 103 times of that of a microfiber), flexibility in surface functionalities and superior mechanical performance (such as stiffness and tensile strength) compared to any other known form of the material. While nanoparticle reinforcement of fiber‐reinforced composites has been shown to be a possibility, much work remains to be performed in order to understand how nanoreinforcement results in dramatic changes in material properties. The understanding of these phenomena will facilitate their extension to the reinforcement of more complicated anisotropic structures and advanced polymeric composite systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A system for incorporating antimicrobial zinc into polymeric materials, in particular hydrogel type polymers has been developed. Zn(Bipy-(MMOES)2) a zinc carboxylate monomer was designed with the purpose of mimicking commercial cross linking agents such as ethylene glycol diacrylate, as well as containing antimicrobial zinc ions (Zn2+), with the intention that it can be used to cross link into any polymeric material, the example here being polyacrylic acid. Two systems were studied: a homopolymer of the Zn(Bipy-(MMOES)2) and copolymers of Zn(Bipy-(MMOES)2) with acrylic acid (AA). The AA – Zn(Bipy-(MMOES)2) produced water swellable polymers which retained antimicrobial activity. The ability of the polymers to release the zinc ions was shown to be pH responsive and the leachate analysed to give a proposed mechanism of action. The Zn(Bipy-(MMOES)2) monomer and polymers have shown antibacterial activity against both gram positive Methicillin susceptible staphylococcus aureus (MSSA 476) and gram negative Pseudomonas aeruginosa (PA01).  相似文献   

8.
Amphiphilic polymers can self assemble into micellar nano-particles and can be effectively used as nano carriers for drug delivery. A number of macromolecular delivery systems are under investigation to improve the efficacy of prospective drugs. In this study, seven new co-polymers were synthesized under mild reaction conditions in bulk (without solvent) by chemoenzymatic approach using Candida antarctica lipase (Novozyme 435) and molecular sieves, subsequently these polymers were treated with different long chain bromoalkanes and acid chlorides for attachment of the lipophilic moieties to the backbone polymer via an ether or an ester linkage, respectively in order to make them amphiphilic. These synthesized nano-particles demonstrated high drug loading capacity and have the potential to encapsulate hydrophobic drugs.  相似文献   

9.
Polyphosphazene derivatives having amino acid ester side groups were prepared by reaction of poly(dichlorophosphazene) with ethyl esters of amino acids. The in vitro degradation studies demonstrated that the rate of degradation depends on the nature of the amino acids. Introducing small amounts of hydrolytically sensitive groups such as depsipeptide ester or hydrolysis-catalysing moieties, such as histidine ethyl ester co-substituents, resulted in an increase of the degradation. The rate of hydrolytic degradation of the polyphosphazene material could be controlled by the content of the hydrolytically sensitive side groups or by blending hydrolysis-sensitive polymers with more stable derivatives. The results obtained from the in vivo implantation of biodegradable polyphosphazenes in mice indicate that the materials are very well tolerated by the animal body. Biodegradable polyphosphazenes have been used as matrix for the design of drug delivery systems. The rate of the in vitro release of mitomycin C from biodegradable polyphosphazenes can be controlled by changing the chemical composition of the polymer or by blending polymers of different chemical compositions.  相似文献   

10.
《中国化学快报》2023,34(4):107720
The clinical efficacy of chemotherapeutic drugs is hindered by their poor aqueous solubility, low bioavailability and severe side effects. In recent years, polymeric nanocarriers have been used for drug delivery to improve the efficacy of many chemotherapeutics. In this study, a series of biodegradable phenylalanine-based poly(ester amide) (Phe-PEA) with tunable molecular weights (MWs) were synthesized to systematically investigate the relationship between the polymer MW and the efficacy of the corresponding polymeric nanoparticles (NPs). The results indicated that a range of polymers with different MWs can be obtained by varying the monomer ratio or reaction time. Doxorubicin (DOX), a classic clinical lymphoma treatment strategy, was selected as a model drug. The loading capacity and stability of the higher MW polymeric NPs were superior to those of the lower MW ones. Moreover, in vitro and in vivo data revealed that high MW polymeric NPs had better anticancer efficacy against lymphoma and higher biosafety than low MW polymeric nanoparticles and DOX. Therefore, this study suggests the importance of polymer MW for drug delivery systems and provides valuable guidance for the design of enhanced polymeric drug carriers for lymphoma treatment.  相似文献   

11.
Hydrogels derived from both natural and synthetic polymers have gained significant scientific attention in recent years for their potential use as biomedical materials to treat human diseases. While a great deal of research efforts have been directed towards investigating polymeric hydrogels as matrices for drug delivery systems, examples of such hydrogels exhibiting intrinsic therapeutic properties are relatively less common. Characteristics of synthetic and natural polymers such as high molecular weight, diverse molecular architecture, chemical compositions, and modulated molecular weight distribution are unique to polymers. These characteristics of polymers can be utilized to discover a new generation of drugs and medical devices. For example, polymeric hydrogels can be restricted to the gastrointestinal tract, where they can selectively recognize, bind, and remove the targeted disease-causing substances from the body without causing any systemic toxicity that are associated with traditional small molecule drugs. Similarly hydrogels can be implanted at specific locations (such as knee and abdomen) to impart localized therapeutic benefits. The present article provides an overview of certain recent developments in the design and synthesis of functional hydrogels that have led to several polymer derived drugs and biomedical devices. Some of these examples include FDA-approved marketed products.  相似文献   

12.
A strategy to study polymeric systems with ordered structures, and in particular comb‐like polymers, is presented. These are dense systems for which atomistic simulations with conventional methods are difficult or even impracticable. The strategy, which has been incorporated into a computer program named MCDP, is based on a Configuration Bias Monte Carlo algorithm and a method to investigate the structure of crystalline polymers using force‐field calculations. To obtain a maximum efficiency, the MCDP computer program has been optimized and parallelized. The ability of MCDP to investigate ordered polymers have been tested by simulating two complex systems: (1) the crystal structure of poly(4‐methyl‐1‐pentene), and (2) the biphasic structure of poly(α‐octyl‐β‐L‐aspartate), a comb‐like polyamide derived from β‐amino acids. The results obtained from MCDP simulations demonstrates the efficiency and reliability of this method to study both the NVT and NPT behavior of ordered dense polymers. © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 162–171, 2001  相似文献   

13.
Drug delivery directly to the colon is a very useful approach for treating localised colonic diseases such as inflammatory bowel disease, ulcerative colitis, and Crohn’s disease. The use of disulphide cross-linked polymers in colon targeted drug delivery systems has received much attention because these polymers are redox sensitive, and the disulphide bonds are only cleaved by the low redox potential environment in the colon. The goal of this study was to synthesise tricarballylic acid-based trithiol monomers for polymerisation into branch-chained disulphide polymers. The monomer was synthesised via the amide coupling reaction between tricarballylic acid and (triphenylmethyl) thioethylamine using two synthesis steps. The disulphide cross-linked polymers which were synthesised using the air oxidation method were completely reduced after 1 h of reduction with different thiol concentrations detected for the different disulphide polymers. In simulated gastric and intestinal conditions, all polymers had low thiol concentrations compared to the thiol concentrations in the simulated colon condition with Bacteroides fragilis present. Degradation was more pronounced in polymers with loose polymeric networks, as biodegradability relies on the swelling ability of polymers in an aqueous environment. Polymer P15 which has the loosest polymeric networks showed highest degradation.  相似文献   

14.
Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and bromhexine (as a drug template) using bulk polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with pore cavities with a high enough affinity for the drug was investigated. The polymeric devices were further characterized by FT-IR, thermogravimetric analysis, scanning electron microscopy, and binding experiments. The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. The controlled release of bromhexine from the prepared imprinted polymers was investigated through in vitro dissolution tests by measuring absorbance at λ max of 310 nm by HPLC-UV. The dissolution media employed were hydrochloric acid at the pH level of 3.0 and phosphate buffers, at pH levels of 6.0 and 8.0, maintained at 37.0 and 25.0 ± 0.5 °C. Results from the analyses showed the ability of MIP polymers to control the release of bromhexine In all cases The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. At the pH level of 3.0 and at the temperature of 25 °C, slower release of bromhexine imprinted polymer occurred.  相似文献   

15.
This study describes the preparation and use of polymeric lipospheresTM as a potential vehicle for the controlled-release of vaccines. Lipospheres are a new encapsulation technology for parenteral drug delivery that have been also used successfully as carriers of vaccines. A recombinant malaria antigen, R32NS1, derived from the circumsporozoite protein of Plasmodium falciparum, was incorporated in biodegradable polymeric lipospheres in the absence or presence of lipid A as an adjuvant. The immunogenicity of polymeric lipospheres composed of polylactide (PLD) or polycaprolactone (PCL) was tested in rabbits after intramuscular injection of the formulations. High levels of specific IgG antibodies were observed in the sera of the immunized rabbits up to 12 weeks after primary immunization, using a solid phase ELISA assay. PCL lipospheres containing the malaria antigen were able to induce sustained antibody activity after one single injection in the absence of immunomodulators. PCL lipospheres showed superior immunogenicity compared to PLD lipospheres, the difference being attributed to the different biodegradation rates of the polymers. Biodegradable polymeric lipospheres represent a pharmaceutically acceptable vaccine delivery system with immunopotentiating activity for humoral antibody responses. The high permeability to many therapeutic drugs, and a lack of toxicity, has made PCL and its derivatives well suited for controlled drug delivery. The results obtained in this study are very promising, with the expectation that the use of biodegradable polymeric lipospheres might be very useful in the conversion of multiple-dose vaccines to single-dose vaccination, avoiding the need for repeated immunizations.  相似文献   

16.
Gradient polymers are two component polymeric systems in which the concentration of one component varies in a continuous way from one side to the other in systems with plane-parallel geometry. Such systems can be obtained from an amorphous polymeric matrix by diffusing into another monomer creating a gradient of concentration, which is fixed by, for example, photo-polymerization. Properties of such systems with plane-parallel geometry are discussed. Paricular attention is given to the systems with cylindrical geometry in which the gradient of the second polymer varies from the center to outside. This class of gradient polymers has a great practical application as gradient optical polymeric fibers and multifocal lenses. An interesting and new class of gradient polymers are systems systems consisting of semicrystalline polymeric matrices in which a gradient of structure is created by appropriate thermal treatment and an amorphous polymer gradient is formed by diffusion of a monomer and its subsequent polymerization. The structural, thermal and mechanical properties are discussed mainly for a model system consisting of polyethylene and polystyrene. The polymeric gradient systems, consisting of an oriented semicrystalline polymer and amorphous gradient polymer, are discussed showing that the structurally gradient matrices and amorphous polymer offer a great variety of factors which can influence the properties of multicomponent gradient polymers. Recently obtained gradient copolymers in which the chemical composition varies from one end to the other a macromolecule are presented. It is shown how such macromolecules can be obtained with different type of changes of the composition. The unusual properties of gradient copolymers are discussed considering their mechanical and thermal properties as well their specific behaviour as compatibilizers. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Novel functional polymers utilizing specific host/guest interactions were designed by introducing α‐CD host molecules into poly(ε‐lysine) chains as side groups. An interesting phase separation was observed as a result of the inclusion complexation between the polymeric host and 3‐(trimethylsilyl)propionic acid as a model guest in aqueous media. This water‐soluble polymeric host would be useful for various applications, particularly drug delivery, due to its biodegradability, low toxicity, and unique functionality represented as a complexation‐induced phase separation.  相似文献   

18.
Functionalized polymeric nanocarriers have been recognized as drug delivery platforms for delivering therapeutic concentrations of chemotherapies. Of this category, star‐shaped multiarm polymers are emerging candidates for targeted delivery of anticancer drugs, due to their compact structure, narrow size distribution, large surface area, and high water solubility. In this study, we synthesized a multiarm poly(acrylic acid) star polymer via macromolecular design via the interchange (MADIX)/reversible addition fragmentation chain transfer (MADIX/RAFT) polymerization and characterized it using nuclear magnetic resonance (NMR) and size exclusion chromatography. The poly(acrylic acid) star polymer demonstrated excellent water solubility and extremely low viscosity, making it highly suited for targeted drug delivery. Subsequently, we selected a hydrophilic drug, cisplatin, and a hydrophobic nitric oxide (NO)‐donating prodrug, O2‐(2,4‐dinitrophenyl) 1‐[4‐(2‐hydroxy)ethyl]‐3‐methylpiperazin‐1‐yl]diazen‐1‐ium‐1,2‐diolate, as two model compounds to evaluate the feasibility of using poly(acrylic acid) star polymers for the delivery of chemotherapeutics. After synthesizing and characterizing two poly(acrylic acid) star polymer‐based nanoconjugates, poly(acrylic acid)–cisplatin (acid–Pt) and poly(acrylic acid–NO (acid–NO) prodrug, the in vitro drug release kinetics of both the acid–Pt and the acid–NO were determined at physiological conditions. In summary, we have designed and evaluated a polymeric nanocarrier for sustained‐delivery of chemotherapies, either as a single treatment or a combination therapy regimen. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Telechelic polymers, macromolecules having two reactive end groups, can serve as building blocks for constructing polymers or polymeric materials that have complex architectures. Among the telechelic polymers, polymers bearing hydroxyl groups at two terminals have been used as components for preparation of functional materials. In the present study, RAFT polymerization of both N‐acryloylmorphorin and N‐succinimidyl acrylate by using a newly synthesized dithiobenzoate‐type chain transfer agent bearing hydroxyl groups at both terminals (HECPHD) was reported. After the acryloylation of the hydroxyl terminals of the obtained polymer, gelation was observed. Furthermore, the polymer could react with a protein via the conjugation of the succinimidyl esters‐containing polymers to the amino groups present on the protein surface. The results show that activated esters‐bearing polymers with hydroxyl groups at both terminals can be used as building blocks for constructing polymeric materials for an immobilization of biomacromolecules. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1356–1365  相似文献   

20.
Mercury-dithizone complex both free and bonded to a polymeric system has been synthesized and used to measure the thermal transition of polystyrene, poly(vinyl acetate), and some other polymers. The thermal relaxation rate of the activated complex in dark has been found to be dependent on the free volume of a polymer matrix. The rate goes through a maximum above Tg of a polymer. A very sensitive method, based on thermal recovery of activated photochromic probe chromophore has been devised to measure the thermal transition of both single and multicomponent polymer matrices. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号