首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new metal-organic coordination polymers, [Co(3-bpcb)(1,3-BDC)]·H2O (1), [Co(4-bpcb)(1,3-BDC)]·2H2O (2) and [Cu(4-bpcb)(1,3-BDC)]2·0.5(4-bpcb) (3), have been hydrothermally synthesized using N,N′-bis(3-pyridinecarboxamide)-1,4-benzene (3-bpcb) or N,N′-bis(4-pyridinecarboxamide)-1,4-benzene (4-bpcb) and 1,3-benzenedicarboxylate (1,3-H2BDC) mixed ligands and characterized by elemental analyses, IR, TG, XRPD and single-crystal X-ray diffraction. Complexes 12 exhibit the similar two-dimensional (2D) network with different undulation degrees and dimensions, owing to different N positions from the 3-bpcb and 4-bpcb ligands. 1,3-BDC ligand in complexes 1 and 2 shows two coordination modes. The adjacent 2D layers for 12 are further linked by hydrogen bonding interactions to form a three-dimensional (3D) supramolecular network. Complex 3 possesses infinite 3-fold interpenetrating 2D network composed of three kinds of Cu-4-bpcb one-dimensional (1D) chains and 1,3-BDC ligands, in which 1,3-BDC only shows one coordination mode. The 2D network is further extended into 3D supramolecular framework by hydrogen bonding interactions. The non-coordinated 4-bpcb ligands existing in the 2D network connect with adjacent 2D layers through the hydrogen bonding interactions. In addition, the electrochemical behaviors and the fluorescence property of complexes 13 have been reported.  相似文献   

2.
The reactions of 1,2-bis(tetrazol-5-yl)benzene (1), 1,3-bis(tetrazol-5-yl)benzene (2), 1,4-bis(tetrazol-5-yl)benzene (3), 1,2-(Bu3SnN4C)2C6H4 (4), 1,3-(Bu3SnN4C)2C6H4 (5) and 1,4-(Bu3SnN4C)2C6H4 (6) with 1,2-dibromoethane were carried out by two different methods in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazoles. This lead to the formation of several alkyl halide derivatives, substituted at either N1 or N2 on the tetrazole ring, as well as the surprising formation of several vinyl derivatives. The crystal structures of both 1,2-[(2-vinyl)tetrazol-5-yl)]benzene (1-N,2-N′) (1b) and 1,3-bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N′) (5d) are discussed.  相似文献   

3.
Acetic acid-catalyzed condensation of 2-amino-3-(1-imino-2,2,2-trifluoroethyl)-1,1,4,5,6,7-hexafluoroindene (1b) with acetone and cyclopentanone gives 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-2,3-dihydro-1,3-diazafluorene (2a) and 5,6,7,8,9,9-hexafluoro-4-trifluoromethyl-2,3-dihydro-1,3-diazafluorene-2-spiro-1′-cyclopentane (3a) together with small amounts of 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-1,2-dihydro-1,3-diazafluorene (2b) and 5,6,7,8,9,9-hexafluoro-4-trifluoromethyl-1,2-dihydro-1,3-diazafluorene-2-spiro-1′-cyclopentane (3b), respectively. When acted upon by (CH3)2SO4 compounds 2, 3 were converted into corresponding fluorine-containing 1-methyl-1,2-dihydro-1,3-diazafluorenes 6, 7. 4a-Chloro-5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-2,4a-dihydro-1,3-diazafluorene (8) has been synthesized by the interaction of compound 2 with SOCl2. Solution of compound 2 as well as 8 in CF3SO3H-CD2Cl2 generated 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-1,2,3,4-tetrahydro-1,3-diazafluorene-4-yl cation (2c). The structures of compounds 2, 3, 6-8 have been determined by single crystal X-ray diffraction.  相似文献   

4.
The preparation of novel Rh (I) and Ir (I) complexes, i.e. [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[PF6] (1), Rh(CF3SO3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (2) and Ir(CF3CO2)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (3) (COD = 1,5-cyclooctadiene), is described. Compounds 1 and 3 were structurally characterized by X-ray diffraction. In 1, the N-heterocyclic carbene acts as a bidentate ligand with the carbene coordinating to the Rh(I) center and an arene group acting as a homoazallyl ligand. The catalytic activity of complexes 13 in the polymerization of phenylacetylene was studied and compared to that of RhCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (4), Rh(CF3COO)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (5), [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[BF4] (6), IrCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (7), IrCl(1,3-diisopropyl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (8), IrBr(1,3-di-2-propylimidazolin-2-ylidene)(COD) (9), RuCl2(PCy3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH–C6H5) (10), RuCl2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (11), Ru(CO2CF3)2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (12). Compounds 16 were active in the polymerization of phenylacetylene. cis-Poly(phenylacetylene) (PPA) was obtained with the rhodium-based catalysts 1, 2, 46, trans-PPA was obtained with the Ir-based catalysts 3 and 8. In addition, compounds 1 and 6 were found to produce highly stereoregular PPA with a cis-content of 100% in the presence of water. Finally, the Ru-based metathesis initiator 12 allowed for the synthesis of trans-PPA, representing the first example of a ruthenium complex being active in the polymerization of a terminal alkyne.  相似文献   

5.
3,1-Benzoxathian-4-ones, 2, when heated with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2, 4-disulfide, 1, or with P4S10 give one or more of the following products 3,1-benzoxathian-4-thione, 3, 1,3-benzodithian-4-one, 4, 1,3-benzodithian-4-thione, 5, and 3H-1,2-benzodithiole-3-thione, 6. Compounds 2, when heated with primary and secondary amines and with hydrazines, give 2-mercaptobenzamides, 7, and 2-mercaptobenzohydrazides, 8, or their corresponding disulfides, 7' and 8'. 3H-1, 2-Benzodithiol-3-immes, which are in equilibrium with 1,2-benzisothiazole-3(2H)-thiones, (9A ? 9B), are prepared by two new routes (a) by allowing 3 or 5 to react with primary amines or hydrazines, (b) by allowing 7, 8, 7' or 8' to react with 1.  相似文献   

6.
The syntheses are reported of the ether-phosphine ligands: 2-(ortho-diphenylphosphinophenyl)-1,3-dioxolane (1a), 2-(ortho-diisopropylphosphinophenyl)-1,3-dioxolane (1b), 2-(ortho-diphenylphosphinophenyl)-1,3-dioxane (1c), 2-(ortho-diisopropylphosphinophenyl)-1,3-dioxane (1d). Their reaction with [(COD)RhCl]2 (COD: 1,5-cyclooctadiene) results in the formation of the mononuclear complexes: {chloro(COD)[2-(ortho-diphenylphosphinophenyl)-1,3-dioxolane]rhodium(I)} (2a), {chloro(COD)[2-(ortho-diisopropylphosphinophenyl)-1,3-dioxolane]rhodium(I)} (2b), {chloro(COD)[2-(ortho-diphenylphosphinophenyl)-1,3-dioxane]rhodium(I)} (2c), and {chloro(COD)[2-(ortho-diisopropylphosphinophenyl)-1,3-dioxane]rhodium(I)} (2d). The chloride ligands of compounds 2a and 2b were abstracted with TlPF6, with accompanied insertion of an acetal oxygen atom of the ligands 1a and 1b into the coordination sphere of the metal centre, producing {(COD)[η2-P,O-2-(ortho-diphenylphosphinophenyl)-1,3-dioxolane]rhodium(I)}PF6 (3a∗PF6) and {(COD)[η2-P,O-2-(ortho-diisopropylphosphinophenyl)-1,3-dioxolane]rhodium(I)}PF6 (3b∗PF6). In contrast the dioxane analogues of 3, 3c∗BF4 and 3d∗BF4, were formed by reacting the ligands 1c, 1d with [Rh(COD)2]BF4. The ligands 1 and the complexes 2 serve as model compounds for their via acetalation to a polyvinylalcohol resin bound analogues. The complexes synthesised were employed as pre-catalysts in the hydroformylation reaction of 1-octene.  相似文献   

7.
《Tetrahedron: Asymmetry》2001,12(2):293-300
(R,S)-1,3-Butanediol 5 was kinetically resolved by enzymatic acetylation with vinyl acetate under the presence of Chirazyme™ L-2, c–f, yielding (S)-1-O-acetyl-1,3-hydroxybutane 6 and (R)-1,3-di-O-acetyl-1,3-butanediol 7 with enantiomeric excesses of 91% (E=67.3). Compounds 6 and 7 were easily transformed into the corresponding (S)-3-O-(2-methoxyethoxymethyl)-3-hydroxybutanal 10 and (R)-3-benzyloxybutanal 19, through a protection–deprotection and functional group interchange methodology. Subsequent reaction of 10 and 19 with 3-(methoxycarbonylpropionylmethylene)triphenylphosphorane afforded methyl (E,S)-8-O-(2-methoxyethoxymethyl)-4-oxo-5-nonenoate 12 and (E,R)-8-benzyloxy-4-oxo-5-nonenoate 20. The alkenes 19 and 20 were then catalytically hydrogenated to the corresponding saturated esters 13 and 21. Treatment of 13 and 21 with 1,2-ethanedithiol/F3B·OEt2 afforded dithioketals 14 and 22, which were respectively reduced to (S)-1,8-dihydroxy-4-nonanone ethylidenedithioketal 15 and (R)-8-O-benzyl-1,8-dihydroxy-4-nonanone ethylidenedithioketal 23. Finally, deprotection of 15 by catalytic hydrogenation under acidic conditions gave the expected (5S,7S)-(−)-7-methyl-1,6-dioxaspiro[4.5]decane 1. The (5R,7R)-(+)-1 enantiomer was analogously prepared from 23. Both compounds were formed by this procedure with an e.e. of 91%.  相似文献   

8.
The reaction between the potassium salt of 5,5-diphenyl-2-thiohydantoin (1) and 1,3-dibromopropane carried out in DME under anhydrous conditions has been found to give two isomeric diphenylimidazothiazines 2 and 3. When the reaction of 1 with 1,3-dibromopropane was performed in protic solvents (EtOH, HOH, NaOH) 2 and 3-(3-mercaptopropyl) - 5,5 - diphenylthiohydantoin (4) were formed. The latter is the product of hydrolysis of 3 taking place under the reaction conditions. 2,3,4,5 - Tetrahydro - 6,6 - diphenylimidazo [2,1-b] - thiazine - 7 (6H) - one (2) crystallises in space group P21/n with a =10.812(3), b =14.905(7), c =9.885(4) Å, β = 104.91(2)°. The 5-membered ring in 2 is planar whereas the 6-membered thiazine ring adopts the sofa conformation.  相似文献   

9.
A series of novel N2-[2-chloro-4(3,4,5-trimethoxy phenyl azetidin-1-yl]-N4-(substituted aryl)-1,3-thiazole-2,4-diamine (4ag) were synthesized starting from 3,4,5-trimethoxy benzaldehyde thiosemicarbazone (1). The compound (1) was obtained by condensing 3,4,5-trimethoxy benzaldehyde with thiosemicarbazide in methanol. 3,4,5-Trimethoxy benzaldehyde thiosemicarbazone (1) on treatment with chloracetyl chloride afforded 4-chloro-[2-(3,4,5-trimethoxy benzylidine) hydrazinyl]-1,3-thiazole (2). Compound (2) was reacted with chloracetyl chloride and triethylamine to obtain the corresponding 4-chloro-N-[2-chloro-4(3,4,5-trimethoxy phenyl) azetidin-1-yl]-1,3-thiazole-2-amine (3). Various substitutions on compound 3 with secondary amines yielded series of compounds (4ag). The newly synthesized compounds were characterized by IR, 1H NMR, elemental analysis and mass spectral studies. All the compounds were screened for their in vitro antioxidant properties. The IC50 values of compounds 3 and 4ag revealed that some of the synthesized compounds were showing potent antioxidant activity.  相似文献   

10.
Reactions of 1,3-bis(pyridin-2-ylmethyl)-1H-imidazol-3-ium hexafluorophosphate, ([HL1](PF6), L1 = 1,3-bis(pyridin-2-ylmethyl)imidazolylidene) and 1,3-bis(pyridin-2-ylmethyl)-1H-benzimidazol-3-ium hexafluorophosphate ([HL2](PF6), L2 = 1,3-bis(pyridin-2-ylmethyl)benzoimidazolylidene) with cuprous oxide in acetonitrile readily yielded trinuclear complexes [Cu3(L1)3(PF6)3] (1) and [Cu3(L2)3(PF6)3] (2). Treatment of 1 with Ni(PPh3)2Cl2 and Pd(cod)Cl2 gave [Ni(L1)Cl](PF6) (3) and [Pd(L1)Cl](PF6) (4), respectively, due to transmetalation. [Ni(L1)2](PF6)2 (5) was obtained from the reaction of [Cu3(L1)3(PF6)3] and Raney nickel in acetonitrile. All these complexes have been fully characterized. Both 1 and 2 consist of a triangular Cu3 core with each Cu–Cu bond capped by an imidazolylidene group. Each imidazolylidene acts as a bridging ligand in a μ2 mode and is bonded equally to two Cu(I) ions. The pincer nickel and palladium complexes are square-planar and contain a tridentate NCN ligand. Complexes 3 and 4 are efficient catalyst precursors for Kumada–Corriu and Suzuki–Miyaura coupling reactions of aryl halides with organometallic reagents.  相似文献   

11.
Reactions of 1,3-bis(pyridin-2-ylmethyl)-1H-imidazol-3-ium hexafluorophosphate, ([HL1](PF6), L1 = 1,3-bis(pyridin-2-ylmethyl)imidazolylidene) and 1,3-bis(pyridin-2-ylmethyl)-1H-benzimidazol-3-ium hexafluorophosphate ([HL2](PF6), L2 = 1,3-bis(pyridin-2-ylmethyl)benzoimidazolylidene) with cuprous oxide in acetonitrile readily yielded trinuclear complexes [Cu3(L1)3(PF6)3] (1) and [Cu3(L2)3(PF6)3] (2). Treatment of 1 with Ni(PPh3)2Cl2 and Pd(cod)Cl2 gave [Ni(L1)Cl](PF6) (3) and [Pd(L1)Cl](PF6) (4), respectively, due to transmetalation. [Ni(L1)2](PF6)2 (5) was obtained from the reaction of [Cu3(L1)3(PF6)3] and Raney nickel in acetonitrile. All these complexes have been fully characterized. Both 1 and 2 consist of a triangular Cu3 core with each Cu–Cu bond capped by an imidazolylidene group. Each imidazolylidene acts as a bridging ligand in a μ2 mode and is bonded equally to two Cu(I) ions. The pincer nickel and palladium complexes are square-planar and contain a tridentate NCN ligand. Complexes 3 and 4 are efficient catalyst precursors for Kumada–Corriu and Suzuki–Miyaura coupling reactions of aryl halides with organometallic reagents.  相似文献   

12.
The trifluoromethyl containing heterocycles, 2-hydroxy-4-aryl-3-(thien-2-oyl)-2-(trifluoromethyl)-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one derivatives 4, were synthesized via a one-pot three-component reaction of aldehyde 1 with 1,3-cyclohexanedione 2 and 4,4,4-trifluoro-1-(thien-2-yl)butane-1,3-dione 3 in the presence of a catalytic amount of Et3N. The effect of bases and solvents on the reaction efficiency and yield was briefly investigated. Treatment of 4 with an excess amount of NH4OAc in ethanol afforded 2-trifluoromethyl-1H-quinolin-5-one derivatives 5. Refluxing of 4 with TsOH in CHCl3 gave the corresponding dehydrated products 8.  相似文献   

13.
The manganese cyclophane complex, [(η6-[32](1,3)cyclophane)Mn(CO)3][BF4] 2, was prepared by the reaction of [[32](1,3)cyclophane] 1 with Mn(CO)5FBF3. Reaction of 2 with NaBH3CN yielded the cyclohexadienyl manganese complex [(η5-6H-[32](1,3)cyclophane)Mn(CO)3] 3. Interestingly, treatment of 3 with Mn(CO)5FBF3 gave the bis-manganese complex (η65-6H-[32](1,3)cyclophane)[Mn(CO)3]2[BF4] 4. When NaBH3CN was treated with 4, [(η55-6H,6H-[32](1,3)cyclophane)Mn(CO)3] 5 was isolated as yellow crystals. The structure of compounds 2 and 3 were determined by single-crystal X-ray crystallography.  相似文献   

14.
The gallium and aluminum complexes containing the redox-active ligand (dpp-bian)Ga-Ga(dpp-bian) (1), (dpp-bian)Al-Al(dpp-bian) (2), or (dpp-bian)AlI(Et2O) (3) (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) react with alkyl butynoates Me-C≡C-CO2R (R = Me, Et) to form C-C bonds between the dpp-bian ligand and alkyne. The reaction of complex 1 with methyl 2-butynoate and 4-chloroaniline in a molar ratio of 1: 2: 2 affords 7-(2,6-diisopropylphenyl)-10-methylacenaphtho[1,2-b]pyridin-8(7H)-one (4) containing no gallium. In the reaction of complex 2 with methyl 2-butynoate, alkyne is inserted into the skeleton of the dpp-bian ligand to form 4-(dpp-AIE)-9-(2,6-diisopropylphenyl)-8-(1,3-dpp-2MBIDP)-3,7-dimethoxy-1,5-dialuma-9-aza-2,6-dioxabicyclo[3.3.1]nonadiene-3,7 (5) (dpp-AIE is 1-[2-(2,6-diisopropylphenylimino)acenaphthen-1(2H)-ylidene]ethyl; 1,3-dpp-2MBIDP is 1,3-bis(2,6-diisopropylphenylimino)-2-methyl-2,3-dihydro-1H-phenalen-2-yl). The reactions of complex 3 with methyl and ethyl 2-butynoates afford dimeric derivatives [-OC(OR)=C(2,3-dpp-1MBIDP)Al(I)-]2 (2,3-dpp-1MBIDP is 2,3-bis(2,6-diisopropylphenylimino)-1-methyl-2,3-dihydro-1H-phenalen-2-yl; R = Me (6), Et (7)). The reaction of complex 3 with methyl 2-butynoate gives the product isomeric to compound 6: [-OC(OCH3)=C(1,3-dpp-2MBIDP)Al(I)-]2 (8), which cleaves THF resulting in complex [-OC(OCH3)=C(1,3-dpp-2MBIDP)Al(OC4H8I)-]2 (9). Complex (dpp-bian)Al(acac) (10), obtained by the reduction of dpp-bian with aluminum in the presence of Al(acac)3 in diethyl ether at ambient temperature, is inert towards acetylene, phenylacetylene, and alkyl butynoates. Compounds 47 and 10 were characterized using IR spectroscopy, and compounds 4, 7, and 10 were additionally characterized by 1H NMR spectroscopy. The structures of compounds 47, 9, and 10 were determined by X-ray diffraction analysis.  相似文献   

15.
Aluminum alkyl-tertiary amine complex was found to induce the catalytic dimerization of methyl crotonate (MCr) to dimethyl 2-methylpent-4-ene-1,3-dicarboxylate (1) and dimethyl 2-methylpent-cis-3-ene-1,3-dicarboxylate (2). The of the γ-hydrogen of the MCr molecule. Dimer 2 is formed through the isomerization of dimer 1. The complex of AlR3 with a bidentate ligand, sparteine, produces dimer 1, selectively. The complex of AlR3 with monodentate ligand NEt3, on the other hand, induces the isomerization of dimer 1 to the cis-form of dimer 2. The coordination number of aluminum alkyl-tertiary amine complex seems to control the dimerization mechanism of MCr.  相似文献   

16.
The reaction of a rhodanine derivative (=(Z)-5-benzylidene-3-phenyl-2-thioxo-1,3-thiazolidin-4-one; 1) with (S)-2-methyloxirane (2) in the presence of SiO2 in dry CH2Cl2 for 10 days led to two diastereoisomeric spirocyclic 1,3-oxathiolanes 3 and 4 with the Me group at C(2) (Scheme 2). The analogous reaction of 1 with (R)-2-phenyloxirane (5) afforded also two diastereoisomeric spirocyclic 1,3-oxathiolanes 6 and 7 bearing the Ph group at C(3) (Scheme 3). The structures of 3, 4, 6, and 7 were confirmed by X-ray crystallography (Figs. 1 and 2). These results show that oxiranes react selectively with the thiocarbonyl group (CS) in 1. Furthermore, the nucleophilic attack of the thiocarbonyl S-atom at the SiO2-activated oxirane ring proceeds with high regio- and stereoselectivity via an SN2-type mechanism.  相似文献   

17.
Mono and dispiro-1,3-dioxanes (1–3) were synthesized by the condensation of 1,2-, 1,3- and 1,4-cyclohexanedione, respectively (4–6) with bis-(hydroxymethyl)-malonic ester (7). The1H-NMR spectra prove for the mono- (2) and dispiro-1,3-dioxane (3) the existence of conformational equilibria and for the monospiro-1,3-dioxane (1) a “fixed” structure. C6D6 causes a remarkable solvent shift effect in the NMR spectra separating a superposed complex coupling pattern (in CDCl3) in two well resolved AB doublets and two AX quartets. TheE-oxime of the monospiro-1,3-dioxanone (1) represents also a “fixed” structure. Bis-(hydroxymethyl)-malonic ester (7) is a formaldehyde generating agent in the condensation reaction of dimedone with the diol7.  相似文献   

18.
The reactions of 3-phenyl-3-methylamino-1,2-propanediol 1a and 3-[(tert-butyldimethylsilyl)oxy]-1-methylamino-1-phenyl-2-propanol 1b with (CH2O)n and CH2Cl2 are appropriate procedures for the preparation of 1,3-oxazines or 1,3-oxazolidines under proper selection of kinetic or thermodynamic reaction conditions. The reaction of 1b with (CH2O)n or CH2Cl2, affords the oxazolidine 2b under kinetic conditions and then this compound can be slowly converted into 5-[(tert-butyldimethylsilyl)oxy]-3-methyl-4-phenyl-3,4,5,6-tetrahydro-2H-1,3-oxazine 3b under thermodynamic control. The mechanism proposed for this transformation and the effect of polar solvents on the acceleration of the reaction has been studied theoretically (DFT level).  相似文献   

19.
Two metal–organic frameworks, namely, [Ni2(BIMB)2(ndd)2·H2O]n (1) and [Zn3(ndd)2.5(μ3-OH)(1,3-dpp)]n (2) (H2ndd = 2,2′-(naphthalene-1,5-diylbis(oxy))diacetic acid, BIMB = 1,4-bis[(1H-imidazol-1-ly)methyl]benzene, 1,3-dpp = 1,3-di(pyridin-4-yl)propane) have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. Compound 1 presents a two-dimensional network with point symbol of (36·46·53)-hxl topology. Moreover, compound 2 displays a novel 2-fold interpenetrated structure with the point symbol of (412·63)-pcu topology based on the hexanuclear [Zn6(CO2)10(N)4] unit as a six-connected node. Meanwhile, compound 2 shows good fluorescence property in the solid state at room temperature.  相似文献   

20.
《Tetrahedron: Asymmetry》1999,10(20):3919-3929
Uncatalyzed and LiClO4 catalyzed cycloadditions of (RS)-1-{1-[(1S)-isoborneol-10-sulfinyl]vinyl}cyclohexene 1 and (RS,E)-3-[(1S)-isoborneol-10-sulfinyl]-1-methoxybuta-1,3-diene 2 with di(p-tolyl)- and di(p-anisyl)-thioketones 3 and 4 occur with complete regioselectivity. The lack of facial diastereoselectivity, observed in the cycloadditions of 1 with 3 or 4, appears to be a consequence of the sterical features of both diene and dienophile which, in the transition states, make the topological differentiation induced by the presence of the alkylsulfinyl group as chiral auxiliary uninfluential. No significant improvement in diastereoselectivity is observed in the LiClO4 catalyzed reactions, but the obtained enantiopure cycloadducts are easily separated by column chromatography and isolated in high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号