首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X–CuII/L). The role of PC was to trigger and drive the polymerization, while X–CuII/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X–CuII/L, generating CuI/L activator and PC˙+. The ATRP ligand (L) used in excess then reduced the PC˙+, closing the photocatalytic cycle. The continuous reduction of X–CuII/L back to CuI/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X–CuII/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions.

Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.  相似文献   

2.
A Ruphos-mediated Suzuki cross-coupling between (hetero)aryl bromides and secondary alkyltrifluoroborates is described using palladium catalysis. The Ruphos ligand showed superior properties as compared to S-Phos in this type of reaction. This method constitutes a valuable extension to current methods for the straightforward production of secondary-alkylated (hetero)aryl derivatives.  相似文献   

3.
The enantioselective functionalization and transformation of readily available cyclopropyl compounds are synthetically appealing yet challenging topics in organic synthesis. Here we report an asymmetric β-arylation of cyclopropanols with aryl bromides enabled by photoredox and nickel dual catalysis. This dual catalytic transformation features a broad substrate scope and good functional group tolerance at room temperature, providing facile access to a wide array of enantioenriched β-aryl ketones bearing a primary alcohol moiety in good yields with satisfactory enantioselectivities (39 examples, up to 83% yield and 90% ee). The synthetic value of this protocol was illustrated by the concise asymmetric construction of natural product calyxolane B analogues.

An asymmetric β-arylation of cyclopropanols with aryl bromides was enabled by enantioselective photoredox and nickel dual catalysis.  相似文献   

4.
The enantioselective ring opening of aziridines using a latent source of HF is described. A combination of two Lewis acids, (salen)Co and an achiral Ti(IV) cocatalyst, provided optimal reactivity and enantioselectivity for the trans β-fluoroamine product. The use of a chelating aziridine protecting group was crucial. Acyclic and cyclic meso N-picolinamide aziridines underwent fluoride ring opening in up to 84% ee, and the kinetic resolution of a piperidine-derived aziridine was performed with krel=6.6. The picolinamide group may be readily removed without epimerization of the fluoroamine. Preliminary studies revealed a bimetallic mechanism wherein the chiral (salen)Co catalyst delivers the nucleophile and the Ti(IV) cocatalyst activates the aziridine.  相似文献   

5.
Transition metal catalysis is one of the most important tools to construct carbon-carbon and carbon-heteroatom bonds in modern organic synthesis. Visible-light photoredox catalysis has recently drawn considerable attention of the scientific community owing to its unique activation modes and significance for the green synthesis. The merger of photoredox catalysis with transition metal catalysts, termed metallaphotoredox catalysis, has become a popular strategy for expanding the synthetic utility of visiblelight photocatalysis. This strategy has led to the discovery of novel asymmetric transformations, which are unfeasible or not easily accessible by a single catalytic system. This contemporary area of organic chemistry holds promise for the development of economical and environmentally friendly methods for the asymmetric synthesis of chiral compounds. In this review, the advances in the enantioselective metallaphotoredox catalysis(EMPC) are summarized.  相似文献   

6.
Catalytic difunctionalization of 1,3-enynes represents an efficient and versatile approach to rapidly assemble multifunctional propargylic compounds, allenes and 1,3-dienes. Controlling selectivity in such addition reactions has been a long-standing challenging task due to multiple reactive centers resulting from the conjugated structure of 1,3-enynes. Herein, we present a straightforward method for regiodivergent sulfonylarylation of 1,3-enynes via dual nickel and photoredox catalysis. Hinging on the nature of 1,3-enynes, diverse reaction pathways are feasible: synthesis of α-allenyl sulfones via 1,4-sulfonylarylation, or preparation of (E)-1,3-dienyl sulfones with high chemo-, regio- and stereoselectivity through 3,4-sulfonylarylation. Notably, this is the first example that nickel and photoredox catalysis are merged to achieve efficient and versatile difunctionalization of 1,3-enynes.

A mild reaction protocol for regiodivergent sulfonylarylation of 1,3-enynes via dual nickel and photoredox catalysis has been developed, which led to efficient synthesis of α-allenyl sulfones or 1,3-dienyl sulfones.  相似文献   

7.
In this letter we describe the application of metallaphotoredox cross-electrophile couplings to the synthesis of liquid crystals using dual nickel and iridium catalysis. Given the proliferation of aryl and alkyl bromides in liquid crystal research we consider that the silyl-radical mediated cross-coupling of alkyl bromide with an aryl bromide (to afford a direct alkyl–aryl bond) will become an extremely powerful tool in the synthesis of liquid crystalline materials, and we use this to synthesise several well-known materials (PCH32, 5CB, CB7CB and CB15) in a single synthetic step from inexpensive and commercially available building blocks. The metallaphotoredox decarboxylative sp3–sp2 cross-coupling of an aryl bromide with an alkyl carboxylic acid provides a complimentary method to form alkyl–aryl bonds, and we use this to successfully prepare trans PCH5 in a single synthetic step from commercially available building blocks. We also prepare novel methylene-linked materials in a single synthetic step, one of which exhibit the topical TB phase.  相似文献   

8.
《中国化学快报》2023,34(11):108271
Efficient and modular synthesis of structurally diverse 1,4-diketones from readily available building blocks represents an essential but challenging task in organic chemistry. Herein, we report a multi-component, regioselective bis-acylation of olefins by merging NHC organocatalysis and photoredox catalysis. With this protocol, a broad range of 1,4-diketones could be rapidly assembled using bench-stable feedstock materials. The robustness of this method was further evaluated by sensitivity screening, and good reproductivity was observed. Moreover, the diketone products could be readily converted into functionalized heterocycles, such as multi-substituted furan, pyrrole, and pyridazine. Mechanistic investigations shed light on the NHC and photoredox dual catalytic radical reaction mechanism.  相似文献   

9.
《中国化学快报》2023,34(10):108544
Metal/nucleophilic Lewis base dual catalysis has been recognized as a reliable and promising strategy for finishing ideal organic synthesis over the past decades. The new strategy can usually achieve some chemical reactions that cannot be realized by the traditionally mono-catalytic system, dramatically expanding the synthetic utility of chemical transformations by leveraging additional activation modes. Thus considerable progress has been made in the synthesis of a wide range of heterocyclic and biologically active compounds by using the combination of diversely metal/nucleophilic Lewis base dual catalysts, including metal/phosphine, metal/N-heterocyclic carbene (NHC) and metal/tertiary amine dual catalysis systems. In this review, we describe a comprehensive and updated advance of metal/nucleophilic Lewis base dual catalytic annualtion reactions, meanwhile, the related mechanism and the application of these annulation strategies in natural product total synthesis will be highlighted in detail.  相似文献   

10.
11.
We describe the synergistic utilization of titanocene/photoredox dual catalysis driven by visible light for the radical opening/spirocyclization of easily accessible epoxyalkynes. This environmentally benign process uses the organic donor–acceptor fluorophore 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as a photocatalyst and Hantzsch ester (HE) as an electron donor instead of stoichiometric metallic reductants. The photocatalytic conditions showed exceptionally high reactivity for the synthesis of privileged and synthetically challenging spirocycles featuring a spiro all-carbon quaternary stereocenter. Cyclic voltammetry (CV) studies suggest that Cp2TiIIICl is the catalytically active species.

We describe the synergistic utilization of titanocene/photoredox dual catalysis driven by visible light for radical opening/spirocyclization of easily accessible epoxyalkynes.

Over the last few decades, radical-based transformations have been increasingly used in organic synthesis due to their salient features, such as ease of generation, mild reaction conditions, and broad functional group compatibility.1,2 As a mild single-electron-transfer (SET) reagent, titanocene monochloride (Cp2TiIIICl) is considered a formidable tool in contemporary radical chemistry due to its ability to promote various fundamental radical-based transformations.3–7 Cp2TiIIICl was first introduced by Nugent and RajanBabu as a very mild stoichiometric reagent for the reductive opening of epoxides.8–11 Later, the catalytic conditions developed by Gansäuer et al. (Scheme 1a)12 employing stoichiometric amounts of active metals in combination with 2,4,6-collidine·HCl further expanded its applications and led to the discovery of a number of novel transformations.13–16 The key to success was the formation of a stable complex A in reactions while decreasing the concentration of active Cp2TiIIICl.17,18 We were interested in the radical opening/cyclization reaction of epoxides which has attracted considerable attention from the synthetic community and has been used numerous times in the synthesis of natural products.19,20 Nevertheless, this reaction required stoichiometric metallic reductants and proceeded slowly particularly with sterically hindered substrates even with high catalyst loading.21 Therefore, the development of an eco-friendly and efficient catalytic system with an expanded substrate scope is highly desirable.Open in a separate windowScheme 1Cp2TiIIICl mediated radical opening/spirocyclization of epoxides; (a) generation of TiIIIvia a metal reduction approach; (b) dual titanocene/photoredox catalysis; (c) examples of drugs and natural products containing heterospirocycles.In recent years metallaphotoredox catalysis has been a new and rapidly growing research subject.22–29 Photoredox processes can directly modulate the oxidation state of metals by electron transfer (ET).30–33 Given that the generation of TiIII is a SET process, we envisioned that the reduction could be facilitated by a photoredox-controlled process while overcoming the aforementioned limitations. On the other hand, spirocycles bearing a chiral spiro all-carbon quaternary carbon are particularly attractive synthetic targets in pharmaceutical development (Scheme 1c).34–36 Such privileged rigid 3D structures offer the concomitant ability to project functionalities in all three-dimensional orientations and led to enhanced pharmacological activities of molecules. Thus significant attention has been paid to their synthesis.37,38 Against this backdrop, here we describe our efforts on the synthesis of various heterospirocycles with the aid of photoredox catalysis.We chose epoxyalkyne 2a as a model substrate for optimization of reaction conditions. After a systematic variation of different reaction parameters, we were pleased to identify the optimal reaction conditions in which a mixture of Cp2TiCl2 (5.0 mol%), [Ir(dtbbpy)(ppy)2]PF6 (1a, 1.0 mol%, EIII/II1/2 = −1.51 V vs. SCE in MeCN), HE (1.2 equiv.) and 2a (1.0 equiv.) in THF at room temperature under the irradiation of a 10 W 450 nm light emitting diode (LED) lamp for 12 hours afforded the desired product 3a in an excellent yield of 96% (13 : 1 d.r.) upon isolation (entry 1). Using a commercial 23 W compact fluorescent lamp (CFL) instead of the 10 W 450 nm LED did not compromise the overall yield of the reaction (entry 2). Notably, when the loading of Cp2TiCl2 was decreased to as low as only 2.0 mol%, the reaction still led to full conversion and produced 3a in 95% yield (entry 3). Further screening of other photosensitizers revealed that the cheap and readily obtained organic dye 4CzIPN 1b is a competent alternative, which led to full conversion with 94% isolated yield (entry 4). Importantly, the reaction did not proceed in the absence of Cp2TiCl2, HE, the photocatalyst, or visible light (entries 5–8). Various solvents, including DMF, MeOH, DMSO, and MeCN, were screened, and they all resulted in poor conversion. The use of other organic electron donors, such as triethylamine, triethanolamine, and ascorbic acid, afforded the product in poor yield.With satisfactory reaction conditions established, we then explored the scope of the cyclization reaction using 4CzIPN as the photosensitizer. Positively, the cyclization reaction worked well and afforded the desired variably heterospirocyclic products in good to excellent yield (Tables 2 and and3).3). The reaction allows the rapid construction of various 5/5, 5/6, 5/7 and 5/8 spiro-ring fused systems (3a–3k) bearing tetrahydrofuran or pyrrolidine motifs via the 5-exo cyclization pathway. Interesting, the diastereoselectivity of the cyclization reaction is highly correlated with the ring size in the substrates. Heterospirocycles containing a 5/5 spiro-ring fused system (3a–3f) were obtained with surprisingly high diastereoselectivity. In some cases (3b, 3c, and 3e) only a single isomer was obtained. The product 3d with a sterically hindered t-butyloxy carbonyl (Boc) protecting group on the N atom was obtained with reduced diastereoselectivity (5 : 1 d.r.). The diastereoselectivities dropped in 5/6, 5/7 and 5/8 spiro-ring fused systems. Given that enantioenriched epoxides could be easily obtained (e.g. via sharpless asymmetric epoxidation), this strategy provides access to optically active spirocycles featuring an all-carbon quaternary stereocenter with the transfer of stereochemical information from epoxides (3c, 3e and 3f). Bis-heterospirocyclic scaffolds were frequently employed in pharmaceutical chemistry. For example, bis-heterospirocyclic 3d is the core structure of DLK inhibitors39 and XEN402 (ref. 40) (scheme 1c), which are used for treating neurodegeneration and congenital erythromelalgia respectively. Furthermore, 6-exo cyclization was also investigated under the standard conditions and smoothly produced a serious of drug-like 6-(trifluoromethyl)-3-pyridinesulfonyl piperidine derivatives including 6/5, 6/6 and 6/7 spiro-ring fused systems (5a–5k) in generally excellent yields. Moreover, cyclization reactions with epoxy-alkynes afforded products containing exocyclic-alkenes and free alcohols which were suitable for further functionalization. This approach provides access to a broad range of novel spirocyclic piperidine and pyrrolidine spirocycles which could be of interest to synthetic and medicinal chemists.Scope of 5-exo and 6-exo cyclizationa,b,c,d
Open in a separate windowaReaction conditions: 2 and 4 (100 mg, 0.1 M in THF).bIsolated yield.c 3c, 3e and 3f were synthesized from enantiomer pure epoxides.dYields within parentheses are based on catalytic conditions using metal as a reductant: CpTi2Cl2 (5 mol%), Zn (2.0 eq.), coll·HCl (2.5 eq.), THF, 20 hours.Additive effect on Ti-catalyzed cyclizationa,b
Open in a separate windowaIn all cases, 2l was used as the substrate and the yield of 3l was determined with 1H NMR.bValues within parentheses are recovery yields of the additives determined with 1H NMR.To examine the scalability of the reaction, gram-scale synthesis of 3a and 3c was performed under the standard conditions with 23 W CFL irradiation. Pleasingly, 92% (3a) and 89% (3c) isolated yields were obtained respectively without any deterioration. Furthermore, an additive-based investigation41 was performed and the results are summarized (Table 3). From this screening, we found that 11 out of 12 additives have no adverse impact on the yield of the reaction. The additives were recovered after the reaction, including benzoxazole 6a, quinazolinone 6b, collidine 6c, tetrahydroquinoline 6d, benzothiazole 6e, indole 6f, and benzofuran 6h. However, quinoxaline 6l strongly inhibited Ti catalysis and 3l was produced in only 23% yield. Notably, the reaction is compatible with various functional groups including phenols 6g, free alcohols and alkene 6j, iodobenzene 6i, ester 3m, ether 3n, dioxolane 5i, lactone 5k, and alkyne 3e. The generality of the dual Ti/4CzIPN catalysis system was further demonstrated by a highly related hydrogen transfer reaction of epoxides which could exclusively provide anti-Markovnikov alcohols (see the ESI S8). The low-cost of 4CzIPN, broad compatibility with sensitive functional groups, and simple operation conditions are appealing for laboratory and industrial applications.Importantly, the reactions were re-subjected to metal reduction catalytic conditions for comparison with the photocatalytic conditions and the yields are shown within parentheses (Table 2d). It clearly showed that the yields were generally lower. Particularly, we found that the yields dropped dramatically as the steric encumbrance of the substrates increased. For example, substrates containing dioxolane (2g, 4i) or a 7/8-membered-ring (2j, 2k, 4j) afforded the products (3g, 5i, 3j, 3k, 5j) in less than 10% yield with the recovery of the starting materials.  相似文献   

12.
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothly via a novel photoredox-quinuclidine dual catalysis. The in situ formed key β-quinuclidinium radical intermediates, derived from the addition of olefins with quinuclidinium radical cations, are used to enable the MBH reaction of non-electron-deficient olefins. On the basis of previous reports, a plausible mechanism is suggested. Mechanistic studies, such as radical probe experiments and density functional theory (DFT) calculations, were also conducted to support our proposed reaction pathways.

A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.  相似文献   

13.
Tertiary alkyl fluorides have been prepared from methyl oxalates derived from tertiary alcohols by a sequential one-pot hydrolysis/photoredox catalyzed radical deoxyfluorination sequence. The reaction operates under mild conditions and tolerates a wide range of functional groups. This method provides an alternative approach to ionic deoxyfluorination transformations for the incorporation of Carbone–Fluorine quaternary centers into organic molecules.  相似文献   

14.
《中国化学快报》2023,34(7):108021
A highly efficient coupling of glycosyl stannanes and sulfonium salts enabled by synergistic Pd/Cu catalysis is disclosed, facilitating the construction of C-aryl/alkenyl glycals under mild conditions in high yields. The protocol tolerates a wide scope of functional groups including ketone, cyano, ester, amide, nitro, halide. The one-pot formal CH glycosylation starting from arene is demonstrated with a reaction sequence of dibenzothiophenylation/Stille coupling. Besides, a gram-scale reaction is performed successfully, showing the high applicability of this protocol.  相似文献   

15.
Fang GH  Yan ZJ  Deng MZ 《Organic letters》2004,6(3):357-360
[reaction: see text] Stereospecific cyclopropanation of alkenylboronic esters of pinacol followed by in situ treatment with excess KHF(2) afforded the corresponding potassium cyclopropyl trifluoroborates in high yields, which then underwent Suzuki-Miyaura cross-coupling reactions with aryl bromides to give cyclopropyl-substituted arenes in good yields with retention of configuration. This promises to be a useful method for the synthesis of enantiomerically pure cyclopropanes.  相似文献   

16.
We disclose herein the first example of merging photoredox catalysis and copper catalysis for radical 1,4-carbocyanations of 1,3-enynes. Alkyl N-hydroxyphthalimide esters are utilized as radical precursors, and the reported mild and redox-neutral protocol has broad substrate scope and remarkable functional group tolerance. This strategy allows for the synthesis of diverse multi-substituted allenes with high chemo- and regio-selectivities, also permitting late stage allenylation of natural products and drug molecules.

An efficient synthesis of multi-substituted allenes by metallaphotoredox-catalyzed decarboxylative 1,4-carbocyanation of 1,3-enynes is described.  相似文献   

17.
18.
Construction of C(sp2)–C(sp3) bonds via regioselective coupling of C(sp2)–H/C(sp3)–H bonds is challenging due to the low reactivity and regioselectivity of C–H bonds. Here, a novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling of dual remote C–H bonds, including inert γ-C(sp3)–H bonds in amides and meta-C(sp2)–H bonds in arenes, to construct meta-alkylated arenes has been accomplished. This metallaphotoredox-enabled site-selective coupling between remote inert C(sp3)–H bonds and meta-C(sp2)–H bonds is characterized by its unique site-selectivity, redox-neutral conditions, broad substrate scope and wide use of late-stage functionalization of bioactive molecules. Moreover, this reaction represents a novel case of regioselective cross-dehydrogenative coupling of unactivated alkanes and arenes via a new catalytic process and provides a new strategy for meta-functionalized arenes under mild reaction conditions. Density functional theory (DFT) calculations and control experiments explained the site-selectivity and the detailed mechanism of this reaction.

A novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling of dual remote C–H bonds, including inert γ-C(sp3)–H bonds in amides and meta-C(sp2)–H bonds in arenes, to construct meta-alkylated arenes has been accomplished.  相似文献   

19.
The development of an NHC-based system capable of cross-coupling sp(3)-sp(3) centers in high yield has been a long-standing challenge. This communication describes the use of a Pd-NHC catalytic system that achieves room-temperature Negishi cross-couplings of unactivated, primary bromides and alkyl organozinc reagents with a variety of functionality. [reaction: see text]  相似文献   

20.
Novel base-free Suzuki-type cross-coupling reaction by the use of triarylantimony diacetates and arylboronic acids in the presence of Pd(PPh3)4 catalyst led to the formation of biaryl derivatives in moderate to excellent yields. The reaction is applicable to a variety of arylboronic acids bearing base-sensitive functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号