首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invited for this month''s cover picture is the group of Young Kee Kang at Chungbuk National University (Republic of Korea). The cover picture shows the preferred conformation of the hexamer of ϵ‐amino acid Amc5a with a cyclopentane substituent in the backbone investigated using DFT methods in chloroform and water. The Amc5a hexamer adopted a stable left‐handed conformation with a rise of 4.8 Å per turn both in chloroform and water. However, the hexamer of Ampa (an analogue of Amc5a with replacing cyclopentane by pyrrolidine) adopted different conformations in chloroform and in water. Read the full text of their Research Article at 10.1002/open.202100253.

“…Finding the appropriate protocol is a crucial step for conformational prediction of peptides and peptide foldamers in solution…” Find out more about the story behind the front cover research at 10.1002/open.202100253.  相似文献   

2.
The Front Cover shows the comparison of circularly polarized luminescence (CPL) properties of square planar platinum(II) complexes with different coordination geometries. Computational studies have revealed that the distortion of the coordination geometry is key to enhancement of the chiroptical responses of these compounds. More information can be found in the Research Article by Masahiro Ikeshita et al.  相似文献   

3.
Invited for this month''s cover picture are the groups of Masahiro Ikeshita and Takashi Tsuno at Nihon University and Yoshitane Imai at Kindai University (Japan). The cover picture shows the comparison of circularly polarized luminescence (CPL) properties of square planar platinum(II) complexes with different coordination geometry. Computational studies have been carried out to investigate these structure‐dependencies, and revealed that the distortion of the coordination geometry results into an enhancement the chiroptical responses of these compounds. Read the full text of their Research Article at 10.1002/open.202100277.

“… How does the stereochemistry of transition metal complexes affect their photophysical properties…” Find out more about the story behind the front cover research at 10.1002/open.202100277.  相似文献   

4.
The Cover Picture shows the conversion of acrylic acid and n‐butanol into butyl acrylate through an engine of Novozym 435, in which the powering piston CalB (Candida antarctica lipase B) is supported by the newly developed GMIM‐I (glucosyl‐methyl‐imidazolium iodide). The authors acknowledge Dr. Johanna Meyer (University of Hannover) for the creation of the cover image. More information can be found in the Research Article by S. Jopp et al. (DOI: 10.1002/chem.202200135).  相似文献   

5.
Invited for this month''s cover picture are the groups of Wolfgang Hübner (TU Kaiserslautern, Germany), Annie Powell (Karlsruhe Institut of Technology, Germany), and Andreas‐Neil Unterreiner (Karlsruhe Institut of Technology, Germany). The cover picture shows the Dy2Ni2‐molecular magnet being excited with a UV/Vis laser pulse, together with its time‐resolved spectrum after the pulse. The comparison of the theoretical and the experimental spectra together with both the observed and the calculated relaxation times reveal, among others, three key points: the intermediate states participating in the laser‐induced dynamics, the partial metal‐to‐oxygen charge‐transfer excitations, and the order of magnitude of the coupling of the molecular magnet to the thermal bath of the environment. Read the full text of their Full Paper at 10.1002/open.202100153.

“… The comparison of the theoretical and the experimental spectra together with both the observed and the calculated relaxation times reveals three key points…” Find out more about the story behind the front cover research at 10.1002/open.202100153.  相似文献   

6.
Invited for this month''s cover picture is the group of Dr. Satoko Hayashi at Faculty of Systems Engineering and Chemistry at Wakayama University. The cover picture shows the linear Se16 σ(16c–30e) interactions, illustrated by the molecular graph type on the optimized structure of the dicationic octamer of 1,5‐(diselena)cane. HOMO‐1 of ψ462 is drawn on the structure, which is located predominantly on the Se atoms. The optimized structure is stable, due to the nice engagement between the (CH2)3 moieties. The contour maps of ρ(r) are also drawn on the molecular C s planes of the dicationic dimer and trimer to demonstrate clearly the existence of the interactions between Se atoms. Read the full text of their Full Paper at 10.1002/open.202100017.

“… To improve the causality of experimental results, we have proposed a new concept, called “Keisan‐sendo…” Find out more about the story behind the front cover research at 10.1002/open.202100017.  相似文献   

7.
The Cope rearrangement of 2,3-divinyloxiranes, a rare example of epoxide C–C bond cleavage, results in 4,5-dihydrooxepines which are amenable to hydrolysis, furnishing 1,6-dicarbonyl compounds containing two contiguous stereocenters at the 3- and 4-positions. We employ an Ir-based alkene isomerization catalyst to form the reactive 2,3-divinyloxirane in situ with complete regio- and stereocontrol, which translates into excellent control over the stereochemistry of the resulting oxepines and ultimately to an attractive strategy towards 1,6-dicarbonyl compounds.

Iridium catalyzed alkene isomerization-cope rearrangement of ω-diene epoxide furnishes 3,4-dihydrooxepines. These oxepines are hydrolyzed to diastereomerically pure 1,6-dicarbonyl compound containing two contiguous stereocenters within acyclic system.

1,6-Dicarbonyl compounds are widespread as targets and intermediates in organic synthesis.1 Due to the “dissonant” polarizing effect induced by the two carbonyl groups,2 these motifs are challenging to retrosynthetically disconnect into classical synthons. Unsurprisingly, many approaches toward 1,6-dicarbonyls rely on dimerization of α,β-unsaturated carbonyl compounds (Scheme 1a)3 or oxidative cleavage of substituted cyclohexene derivatives4 which significantly limits the range of possible products. Alternative strategies, such as the ring-opening of donor–acceptor cyclopropanes with enolate nucleophiles, efficiently form the 1,6-dicarbonyl skeleton, albeit with limited substrate scope (Scheme 1b).5 The Cope rearrangement of 1,5-dienes, featuring oxygen functionality in the 3- and 4-positions,6 represents a promising strategy towards 1,6-dicarbonyl compounds but suffers from lack of stereocontrol over the diene substrates, resulting in diastereomeric mixtures of products (Scheme 1c).Open in a separate windowScheme 1Selected approaches towards the formation of 1,6-dicarbonyl compounds and our proposed approach.A conceptually related approach towards the preparation of 1,6-dicarbonyl compounds is through the hydrolysis of 3,4-dihydrooxepines (Scheme 1d), which are in turn generated through the Cope rearrangement of 2,3-divinyloxiranes.7 Such a sigmatropic rearrangement is also noteworthy as a rare example where an epoxide C–C bond is selectively cleaved over the usually more reactive C–O bond. This intriguing rearrangement has been studied but its use in synthesis is scarce, presumably due to difficulties in the stereoselective synthesis and handling of the key divinyl epoxides.In line with our interest in the strategic application of alkene isomerization to generate reactive synthetic intermediates in stereodefined form,8 we posited to form the reactive 2,3-divinyloxiranes in situ, through alkene isomerization9,10 of the simpler allyl epoxides, which are accessible in enantiomerically enriched form.11 Such a strategy might greatly facilitate access to these intermediates and therefore uncover a synthetically attractive route toward 1,6-dicarbonyl compounds featuring two contiguous stereocenters.With this idea in mind, we first explored the isomerization and subsequent Cope rearrangement of allyl-vinyl epoxides 1 (Scheme 2). To induce isomerization, we employed a cationic iridium-based catalytic system,12 which is known to reliably isomerize alkenes with high degrees of regio- and stereocontrol.13Open in a separate windowScheme 2Substrate scope for the tandem iridium-catalyzed alkene isomerization-Cope rearrangement of allyl-vinyl epoxides.In line with our expectations, our model substrate 1a (R2 = R3 = H, R4 = Me, R5 = CO2Et) was smoothly isomerized at 65 °C in the presence of 1.5 mol% of Ir dimer to obtain the corresponding divinyl epoxide with a complete E-selectivity. With suitable conditions for alkene isomerization in hand, we exposed substrate 1a to the Ir-based catalytic system at 120 °C and were equally pleased to observe the 4,5-dihydrooxepine product 2a, resulting from the tandem isomerization-Cope rearrangement as a single diastereoisomer in 81% yield. We proceeded to test the generality of our protocol with respect to different alkene and epoxide substitution patterns. Pleasingly, product 2b was generated with complete stereoselectivity, showcasing the compatibility of the reaction conditions with potentially labile tertiary stereocenters α to the ester group. We then wondered whether the anti-diastereomer could be accessed starting from the corresponding cis allyl-vinyl epoxide. Indeed, in line with the known stereospecific behavior of the Cope rearrangement, we obtained the complementary diastereomer 2c. Turning our attention to more highly substituted epoxides, we were pleased to observe the formation of dihydrooxepines 2d and 2e, which correspond to 1,6-keto-aldehyde and diketone products, respectively. Substrate 1f (R2 = R4 = R5 = H, R3 = Ph), which features an unactivated vinyl group, also underwent the rearrangement, demonstrating that an activated alkenyl group is not required for a successful outcome. Similarly, product 2g featuring two alkyl groups is also generated, with high diastereoselectivity albeit in moderate yield. Products featuring ethyl and methyl ester 2h, 2i could also be obtained in good yields and diastereoselectivity. We next tested substrate 1j (R2 = Me, R3 = Ph, R4 = CH2CH2Ph, R5 = H), as a geometric-mixture of the double bond (E : Z = 1.1 : 1) and in accordance with the stereospecificity of the process, the oxepine 2j was obtained as a mixture of two diastereomers with the same ratio. Disappointingly, substrate 1k did not undergo isomerization, presumably due to the Lewis basic nature of the ketone, likely poisoning the Ir-catalyst.During our study, we noticed that allyl-vinyl epoxides bearing electron donating groups on the vinyl moiety tend to decompose during purification by column chromatography on silica gel. This obstacle further motivated us to explore diallyl epoxides 3 as substrates, where the reactive divinyl epoxide would be generated by isomerization of both allyl fragments. Notably, these diallyl epoxides are much more stable compared to their vinyl counterparts and can be readily prepared in two steps from simple alkynes.14 To our delight, diallyl epoxide 3a (R = CH2OMe) smoothly underwent the double isomerization-Cope rearrangement cascade at 140 °C, furnishing oxepine 2l with impressive yield and diastereoselectivity (Scheme 3). The use of alkene isomerization to form the reactive divinyl epoxide in situ avoids the isolation of the unstable divinyl epoxide, while controlling the stereochemistry of both double bonds, particularly not trivial to achieve using classical olefination reactions. Products 2m and 2n feature ester and silyl groups, highlighting the functional group tolerance of the catalytic system.Open in a separate windowScheme 3Substrate scope for tandem iridium-catalyzed double alkene isomerization-Cope rearrangement of diallyl epoxides.Our next objective was to hydrolyze the diastereomerically pure oxepines obtained through the rearrangement in a stereoretentive fashion, revealing the acyclic 1,6-dicarbonyl motif. Pleasingly, diversely substituted oxepines 2 underwent smooth hydrolysis either using 5 mol% of Pd(MeCN)2Cl215 at 50 °C or an acidic aqueous solution to form 1,6-dicarbonyls 4 in diastereomerically pure form (Scheme 4).16 Dicarbonyl products featuring labile tertiary centers 4a and 4b are formed under these conditions with excellent diastereoselectivities and yields. Without surprise, oxepine 2f (R2 = R4 = R5 = H, R3 = Ph) furnished the keto-substituted product 4c in good yield. The relative stereochemistry of 4b was unambiguously confirmed by single crystal X-ray diffraction analysis of the corresponding carboxylic acid 7 (Scheme 4b).17 The reaction is scalable to ½ gram of substrate and could be performed in a single-pot operation without isolation of the intermediate oxepine (Scheme 4b). By using this approach, 1h provides 4b in 61% yield as a single diastereomer, underlining the synthetic potential and efficiency of this method.Open in a separate windowScheme 4Hydrolysis of oxepines and one-pot sequence.  相似文献   

8.
Correction for ‘Highly selective acid-catalyzed olefin isomerization of limonene to terpinolene by kinetic suppression of overreactions in a confined space of porous metal–macrocycle frameworks’ by Wei He et al., Chem. Sci., 2022, 13, 8752–8758, https://doi.org/10.1039/d2sc01561g.

The authors regret that there were errors in Fig. 2, Fig. 5 and Fig. 6 in the original article and Fig. S18 of the ESI. The stereochemistry of the chemical structural formulas for (−)-α-pinene (6) and (−)-β-pinene (7) was incorrectly reversed. The correct versions of the figures are shown below, and in the updated version of the ESI.Open in a separate windowFig. 2Metal–macrocycle framework (MMF). (a) Self-assembly of asymmetrically twisted PdII-macrocycles into (b) a porous crystal MMF (sticks model) with five enantiomeric pairs of binding pockets (surface model). (c) Previously reported site-selective adsorption of (−)-α-pinene (6) (space-filling model) on the channel surface of the MMF.1 Blue, yellow, red, or black dashed circles indicate the ceiling-, side-, bottom-, or tubular-pockets of the MMF, respectively. MMF: Pd, yellow; Cl, green; N, blue; C, grey. 6: C, pink; H, white. Hydrogen atoms attached to the MMF were omitted for clarity. Green or blue surface represents exposed Cl or N–H groups of the MMF, respectively.Open in a separate windowFig. 5Investigation of the inhibitory effects of additives on the isomerization reaction of 2 using 2-NBSA@MMF at 25 °C for 102 h.Open in a separate windowFig. 6Crystallographic study of MMFs soaked in (a) a CHCl3 solution containing 1 (1.0 M), (b) a CHCl3 solution containing 2 (1.0 M), and (c) a CH3CN solution containing 7 (1.0 M). MMF: stick model or surface model; 1 and 7: space-filling model; water and CHCl3: stick model. Red dashed circles indicate the bottom pocket of the MMF. MMF: Pd, yellow; Cl, green; N, blue; C, grey. 1: C, yellow; H, white. 7: C, pink; H, white. Water and CHCl3: O, red; H, white; C, grey; Cl, green. Hydrogen atoms attached to the MMF were omitted for clarity. Green and blue surface represents exposed Cl and N–H groups of the MMF, respectively.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

9.
Despite the rapid growth of enantioselective halolactonization reactions in recent years, most are effective only when forming smaller (6,5,4-membered) rings. Seven-membered ε-lactones, are rarely formed with high selectivity, and never without conformational bias. We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA).

We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA).  相似文献   

10.
Correction for ‘HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes’ by Elisabetta Alberico et al., Chem. Sci., 2021, 12, 13101–13119, DOI: 10.1039/D1SC04181A.

The authors regret that in Scheme 2 of the original article, complexes 7 and 8 were drawn incorrectly. The solid-state structure of both complexes, as established by X-ray analysis, had been previously reported (7 (ref. 1) and 8 (ref. 2)). In both complexes, the PNP ligand adopts a facial tridentate coordination to molybdenum and not a meridional one, as erroneously shown in Scheme 2 of the original article. The correct ligand arrangements in the metal coordination sphere for complexes 7 and 8 are reported below in Scheme 1.Open in a separate windowScheme 1Mo–PNP complexes tested in the dehydrogenation of HCOOH.Open in a separate windowScheme 2Proposed mechanisms for HCOOH dehydrogenation (red), disproportionation (blue) and decarbonylation (green) promoted by 5. Evidence for the formation of a Mo(iv) species is based on the detection by NMR of H2 and HD following addition of DCOOD to Mo(H)n species (see Fig. SI-31).Please note that complex 8 is also shown in Scheme 4 in the proposed mechanism for HCOOH decarbonylation (green part), and in Fig. 2. In both cases, the correct structure for complex 8 is reported below in Scheme 2 and Fig. 1.Open in a separate windowFig. 1 1H and 31P{1H} NMR spectra of a toluene-d8 solution of {Mo(CH3CN)(CO)2(HN[(CH2CH2P)(CH(CH3)2)2]2} 4 in the presence of 100 equivalents of HCOOH ([Mo] 10−2 M, [HCOOH] 1 M), before (a) and after heating at 90 °C for 1 hour (b). Spectra were recorded at room temperature. Signals related to complex 5 are marked by red dots.Open in a separate windowFig. 2Molecular structure of {Mo(CO)2(CH3CN)[CH3N(CH2CH2P(CH(CH3)2)2)2]} 9. Displacement ellipsoids correspond to 30% probability. Hydrogen atoms are omitted for clarity.Furthermore, a mistake was made in the caption of Fig. 6, showing the solid-state structure of complex 9: the latter has been incorrectly described as a Mo(i)-hydride species {Mo(H)(CO)2(CH3CN)[CH3N(CH2CH2P(CH(CH3)2)2)2]}. The correct formula, in agreement with the X-ray structure, is as follows and is shown above in Fig. 2: {Mo(CO)2(CH3CN)[CH3N(CH2CH2P(CH(CH3)2)2)2]}.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

11.
Herein reported is a strategy for constructing vicinal 4°/3° carbons via reductive Cope rearrangement. Substrates have been designed which exhibit Cope rearrangement kinetic barriers of ∼23 kcal mol−1 with isoenergetic favorability (ΔG ∼ 0). These fluxional/shape-shifting molecules can be driven forward by chemoselective reduction to useful polyfunctionalized building blocks.

Herein reported is a strategy for constructing vicinal 4°/3° carbons via reductive Cope rearrangement.

Constructing sterically congested vicinal quaternary–tertiary carbons (4°/3° carbons) via Cope rearrangement is currently quite limited with only a handful of papers on the subject published over the past 40 years. This stands in stark contrast to the plethora of other methods for establishing sterically congested vicinal carbons.1–5 Central to the challenge are kinetic and thermodynamic issues associated with the transformation. In the simplest sense, Cope rearrangements proceed in the direction that results in highest alkene substitution (Fig. 1).6,7 To forge 4°/3° motifs by Cope rearrangement, additional driving forces must be introduced to reverse the [3,3] directionality and compensate for the energetic penalty associated with the steric and torsional strain of the targeted vicinal 4°/3° motif. With limited reports in all cases, oxy-Cope substrates (Scheme 1, eqn (1)),8–14 divinylcyclopropanes (Scheme 1, eqn (2)),15–20 and vinylidenecyclopropane-based 1,5-dienes21 (Scheme 1, eqn (3)) have demonstrated favourability for constructing vicinal 4°/3° carbons. Malachowski et al. put forth a series of studies on the construction of quaternary centers via Cope rearrangement driven forward by a conjugation event (Scheme 1, eqn (4)).22–25 In their work, a single example related to the construction of vicinal 4°/3° centers was disclosed, though kinetic (180 °C) and thermodynamic (equilibrium mixtures) challenges are also observed.23 And of particular relevance to this work, Wigfield et al. demonstrated that 3,3-dicyano-1,5-dienes with the potential to generate vicinal 4°/3° carbons instead react via an ionic mechanism yielding the less congested products (Scheme 1, eqn (5)).26Open in a separate windowFig. 1Cope equilibrium of 1,1,6-trisubstituted 1,5-dienes.Open in a separate windowScheme 1(A) Cope rearrangements for constructing vicinal 4°/3°-centers (B) this report.Our group has been examining strategies to decrease kinetic barriers and increase the thermodynamic favourability of 3,3-dicyano-1,5-diene-based Cope substrates.27–31 Beyond the simplest, unsubstituted variants, this class of 1,5-diene is not particularly reactive in both a kinetic and thermodynamic sense (e.g.Scheme 1, eqn (5)).26,32 Reactivity issues aside, these substrates are attractive building blocks for two main reasons: (1) they have straightforward accessibility from alkylidenemalononitriles and allylic electrophiles by deconjugative allylic alkylation.33 (2) The 1,5-diene termini are substantially different (malononitrile vs. simple alkene) thus allowing for orthogonal functional group interconversion facilitating target and analogue synthesis.34 Herein we report that a combination of 1,5-diene structural engineering28,31 and reductive conditions (the reductive Cope rearrangement29,30) can result in the synthesis of building blocks containing vicinal gem-dimethyl 4°/3° carbons along with orthogonal malononitrile and styrene functional groups for interconversion (Scheme 1B). On this line, malononitrile can be directly converted to amides34 yielding functionally dense β-gem-dimethylamides, important pharmaceutical scaffolds.35This project began during the Covid-19 pandemic lockdown (ca. March–May 2020). As such, we were not permitted to use our laboratory out of an abundance of caution. We took this opportunity to first computationally investigate a Cope rearrangement that could result in vicinal 4°/3° carbons (Scheme 2). Then, when permitted to safely return to the lab, we would experimentally validate our findings (vide infra). From our previous work, it is known that by adding either a 4-aromatic group28 or a 4-methyl group31 to a 3,3-dicyano-1,5-diene, low barrier (rt – 80 °C) diastereoselective Cope rearrangements can occur. Notably, the 4-substituent was found to destabilize the starting material (weaken the C3–C4 bond, conformationally bias the substrate for [3,3]), and stabilize the product side of the equilibrium via resonance (phenyl group) or hyperconjugation (methyl group). In this study, we modelled substrates 1, 3, and 5 that have variable 4-substitution and would result in vicinal gem-dimethyl- and phenyl-containing 4°/3° carbons upon Cope rearrangement to 2, 4, or 6, respectively. We chose to target this motif due to likely synthetic accessibility from simple starting materials but also because of the important and profound impact that gem-dimethyl groups impart on pharmaceuticals.35 Substrate 1 lacking 4-substitution had an extremely unfavourable kinetic and thermodynamic profile (ΔG = 31.6; ΔG = +5.3 kcal mol−1). When a 4-methyl group was added, the kinetic barrier (ΔG) dropped appreciably to 28.2 kcal mol; however, the thermodynamics were still quite endergonic (ΔG = +4.4 kcal mol−1). Most excitingly, it was uncovered that the 4-phenyl group dramatically impacted the kinetics and thermodynamics: the [3,3] has a barrier of 22.9 kcal mol−1G) and is ∼isoenergetic (ΔG = +0.17 kcal mol−1). Thus, the reaction appears to be fluxional/shape-shifting at room temperature.36–40 For this substrate, we also modelled the dissociative pathway (Scheme 2D). It was found that bond breakage to two allylic radical intermediates is a higher energy process than the concerted transition state (Scheme 2Cvs.Scheme 2D). Specifically, the dissociative pathway was found to be kinetically less favourable (ΔG ∼ 27.6 kcal mol; ΔG = 26.2 kcal mol−1) than the concerted process (ΔG = 22.9 kcal mol−1). While the dissociative pathway is less favourable than the concerted transformation, we surmised that the two-step process becomes accessible at elevated temperature (vide infra). Finally, the ionic pathway was calculated to be significantly higher for this substrate (see the ESI).Open in a separate windowScheme 2Computational analysis of 3,3-dicyano-1,5-diene that in theory could result in vicinal 4°/3° carbons. (A) 4-Unsubstituted 3,3-dicyano-1,5-diene. (B) 4-Methyl 3,3-dicyano-1,5-diene. (C) 4-Phenyl 3,3-dicyano-1,5-diene. (D) The dissociative mechanism for substrate 5 is higher than the closed transition state. (E) visualization of the kinetic- and thermodynamic differences of transformations (A–D).The class of substrate uncovered from our computational investigation could be accessed from γ,γ-dimethyl-alkylidenemalononitrile (7a) and 1,3-diarylallyl electrophiles (such as 8a) by Pd-catalyzed deconjugative allylic alkylation (Scheme 3A).33 As such, model 1,5-diene 5a was prepared to verify the computational results. It was found that upon synthesis of 5a, an inseparable 21 : 79 mixture of 1,5-diene 5a and the 1,5-diene 6a was observed. The predicted ratio of 5a to 6a was 57 : 43 (Scheme 2C). These two results are within the error of the calculations (predicted; slightly endergonic, observed; slightly exergonic). To determine whether the transformation was progressing through the predicted concerted pathway (Scheme 2C) over the dissociative pathway (Scheme 2D), substrate 5b was prepared by an analogous deconjugative allylic alkylation reaction. Similarly, two Cope equilibrium isomers 5b and 6b are observed at room temperature in a 12 : 88 ratio. Upon heating at 100 °C for 3 h, the 1,5-dienes “scramble” (e.g. iso-6b is observed; 0.2 : 1.0 : 1.5 ratio of 5b : 6b : iso-6b) indicating that the dissociative pathway is only accessible at elevated temperature. This is all in good agreement with the calculated kinetics and thermodynamics of this system (Scheme 2).Open in a separate windowScheme 3(A) Observation of fluxional [3,3] and confirmation of calculated predictions. (B) Optimization of a reductive Cope rearrangement protocol for constructing vicinal 4°/3° centers. (C) The Pd-catalyzed deconjugative allylic alkylation must be regioselective.With respect to the synthetic methodology, we aimed to increase the overall efficiency and applicability of the sequence (Scheme 3B). Specifically, we wanted to avoid [3,3] equilibrium mixtures and sensitive/unstable substates and intermediates. It was found that the direct coupling of 7a with diphenylallyl alcohol 9a could take place in the presence of DMAP, Ac2O, and Pd(PPh3)4. When the coupling was complete, methanol and NaBH4 were added to drive the Cope equilibrium forward, yielding the reduced Cope rearrangement product 10a in 76% isolated yield. In terms of practicality and efficiency, this method utilizes diphenylallyl alcohols, which are more stable and synthetically accessible than their respective acetates, and the [3,3] equilibrium mixture can be directly converted dynamically to a single reduced product.With an efficient protocol in hand for constructing malononitrile–styrene-tethered building blocks featuring central vicinal 4°/3° carbons, we next examined the scope of the transformation (Scheme 4). We chose diarylallyl alcohols with the propensity to react regioselectively via an electronic bias (Scheme 3C).41,42 The combination of p-nitrophenyl and phenyl (10b) or p-methoxyphenyl (10c) yielded regioselective outcomes with the electron-deficient arene at the allylic position. This is consistent with the expected regiochemical outcome where the nucleophile reacts preferentially at the α-position and the electrophile reacts at the allylic position bearing the donor-arene (Scheme 3C).41,42 Then, reductive Cope rearrangement occurs to position the electron-deficient arene adjacent to the gem-dimethyl quaternary center. This is an exciting outcome as many pharmaceutically relevant (hetero)arenes are electron deficient. Thus, fluorinated arenes were installed at the allylic position of products 10d–10k. While the phenyl group resulted in poor regioselectivity (1 : 1–3 : 1), the p-methoxyphenyl group enhanced the regiomeric ratios in all cases (3 : 1–15 : 1). The degree of selectivity is correlated with the number and position of fluorine atoms. N-Heterocycles could be incorporated with excellent regioselectivity, generally speaking (10l–10q). For example, 3-chloro-4-pyridyl (10l/10m) groups were installed at the allylic position with >20 : 1 rr. 4-Chloro-3-pyridyl was poorly regioselective (10n), but the combination of 4-trifluomethyl-3-pyridyl/p-methoxyphenyl (10o) gave good regioselectivity of 11 : 1. 2-Pyridyl/p-methoxyphenyl (10q) was also a regioselective combination. We also examined a few other heterocycles including quinoline (10s) and thiazole (10t and 10u) with excellent and modest regioselectivity observed, respectively. As a general trend, when the arenes on the allylic electrophile become less polarized, poor regioselectivity is observed in the Pd-catalyzed allylic alkylation. For example, the combination of p-chlorophenyl and p-methoxyphenyl (10v) or phenyl (10w) yields regioisomeric mixtures of products. This can be circumvented by utilizing symmetric electrophiles (to 10x).Open in a separate windowScheme 4Scope of the 4°/3°-center-generating reductive Cope rearrangement.The phenyl or the p-methoxyphenyl group is necessary to achieve the 4°/3° carbon-generating Cope rearrangement: it functions as an “activator” by lowering the kinetic barrier and increasing thermodynamic favourability. These activating groups can be removed through alkene C Created by potrace 1.16, written by Peter Selinger 2001-2019 C cleavage reactions (e.g. metathesis (Scheme 5) and ozonolysis (Scheme 6B)). In this regard, highly substituted cycloheptenes 11 were prepared by allylation and metathesis (Scheme 4).28,43 The yields were modest to excellent over this two-step sequence. In many cases, where 10 exists as a mixture of regioisomers, the major allylation/RCM products 11 could be chromatographically separated from their minor constituents. As shown in Scheme 6A, the malononitrile can be transformed via oxidative amidation34 to products 12 containing a dense array of pharmaceutically relevant functionalities (amides, gem-dimethyl, fluoroaromatics, and heteroaromatics). Following this transformation, ozonolysis terminated with a NaBH4 quench installs an alcohol moiety on small molecule 13a.Open in a separate windowScheme 5Removal of the “activating group” by ring-closing metathesis.Open in a separate windowScheme 6(A) oxidative amidation of malononitrile. (B) Removal of “activating group” by ozonolysis.These first computational and experimental studies utilizing 3,3-dicyano-1,5-dienes as substrates for constructing vicinal 4°/3° centers sets the stage for much further examination and application. For example, while we focused our efforts on gem-dimethyl-based quaternary carbons, it is likely that other functionality can be installed at this position. For example, while unoptimized, it appears the protocol is reasonably effective at incorporating a piperidine moiety in addition to heteroarenes from the allylic electrophile (7b + 9f → 14a; Scheme 7A). Similar functional group interconversion chemistry as described in Schemes 5 and and66 can thus yield functionally dense building blocks 15 and 16 in good yields.Open in a separate windowScheme 7(A) The construction of 4/3° centres on piperidines. (B) Promoting endergonic [3,3] rearrangements is possible, assuming the [3,3] kinetic barrier is sufficiently low.While the 4,6-diaryl-3,3-dicyano-1,5-dienes offered the most attractive energetic profile (low kinetic barrier, isoenergetic [3,3] equillibrium; Scheme 2C), the 4-methyl analogue is also intriguing to consider as a viable substrate class for reductive Cope rearrangement (Scheme 2B). The challenge here is that the kinetics and thermodynamics are quite unfavourable (not observable by NMR), but potentially not prohibitively so. It is extremely exciting to find that Cope equilibria that are significantly endergonic in the desired, forward direction (e.g.3a to 4a) can be promoted by a related reductive protocol (Scheme 7B). While unoptimized, we were able to isolate product 17 in xx% yield by heating at 90 °C in the presence of Hantzsch ester in DMF.  相似文献   

12.
Where are the excess electrons in Ag16B4O10?

Ag16B4O10 features an exotic scheme of chemical bonding and extends the growing family of subvalent silver oxides. These findings constitute a new general and intrinsic facet of the chemistry of silver, which has not been fully understood, yet, and definitely deserves to be analysed from different perspectives. Against this background, we distinctly appreciate the efforts made by A. Lobato, Miguel Á. Salvadó, and J. Manuel Recio (LSR) in studying these phenomena at the example of the title compound.1 While the computational results presented in the Comment article well comply with those published in our original paper,2 the interpretations follow different routes. Whereas LSR focus on the analogy of pattern of the Electron Localization Function (ELF) in position space in the title compound with those found in elemental silver, we interpreted the electronic structure of Ag16B4O10, both in position and reciprocal space, also considering the interactions between cationic and anionic partial structures.  相似文献   

13.
Correction for ‘Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes’ by Nathan Corbin et al., Chem. Sci., 2021, DOI: 10.1039/D1SC02413B.

We regret that there was a minor error in the structure of the benzyl chloride in Scheme 2, Fig. 2 and the ESI. The structure of the benzyl chloride should be 4-methyl benzyl chloride but was instead given as 3-methyl benzyl. The correct figure and scheme are shown below, and the ESI has been updated.Open in a separate windowFig. 2(A) Comparison of acid yields for non-sacrificial-anode and sacrificial-anode carboxylation of various substrates. (B) Ratio of carboxylic acid to nucleophilic side products (ester + carbonate + alcohol) for various systems and substrates. Effect of adding MgBr2 to the sacrificial-anode system on the (C) acid yield and (D) ratio of acid to SN2 side products for benzyl bromide. Acid yields are tabulated in Table S6.† ND: acid not detected (acid-to-SN2 ratio <0.1).Open in a separate windowScheme 2Substrate scope for the sacrificial-anode-free electrochemical carboxylation of organic halides. aStandard reaction conditions: 100 mM electrolyte, 100 mM substrate, 100 mM MgBr2, silver cathode, platinum anode, 20 sccm CO2, 2.2 mL DMF, −20 mA cm−2 for 3.5 h. TBA-Br was used for chlorinated substrates because bromide oxidizes more readily than chloride, and only a small amount of chloride was replaced by bromide (<1% for the alkyl chloride, ∼4% for the benzylic chloride). Yields are referenced to the initial amount of substrate and were calculated from 1H NMR spectroscopy using either 1,3,5-trimethoxybenzene or ethylene carbonate as internal standards. b−15 mA cm−2 instead of −20 mA cm−2. c150 mM MgBr2 instead of 100 mM MgBr2.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

14.
The construction of C(sp2)–X (X = B, N, O, Si, P, S, Se, etc.) bonds has drawn growing attention since heteroatomic compounds play a prominent role from biological to pharmaceutical sciences. The current study demonstrates the C(sp2)–S/Se and C(sp2)–N bond formation of one carbon of isocyanides with thiophenols or disulfides or diselenides and azazoles simultaneously. The reported findings could provide access to novel multiple isothioureas, especially hitherto rarely reported selenoureas. The protocol showed good atom-economy and step-economy with only hydrogen evolution and theoretical calculations accounted for the stereoselectivity of the products. Importantly, the electrochemical reaction could exclusively occur at the isocyano part regardless of the presence of susceptible radical acceptors, such as a broad range of arenes and alkynyl moieties, even alkenyl moieties.

We have developed an efficient and sustainable electrochemical strategy for the double C(sp2)–X (S/Se, N) bond formation of isocyanides simultaneously. A series of novel isothio/selenoureas were obtained via a three-component cross-coupling.

The construction of C(sp2)–X (X = B, N, O, Si, P, S, Se, etc.) bonds has drawn increased attention from researchers since heteroatomic compounds play a prominent role in various fields.1 Traditionally, the transition-metal-catalyzed cross-coupling of a nucleophile and an electrophile is an important method for the formation of C(sp2)–X bonds.2 Obviously, the direct cross-coupling of C(sp2)–H/X–H is a time-, effort-, and resource-economical process to construct C(sp2)–X bonds as it avoids the pre-functionalization of substrates.3 Alternatively, radical chemistry provides greener and more mild strategies for the formation of C(sp2)–X bonds, and a variety of high added-value compounds can be afforded successfully.4 Despite the numerous advances, these reported reactions are limited as they involve only single C(sp2)–X bond formation. Access to double C(sp2)–X bonds formation of one carbon remains still a room for improvement stimultaneously.As an ideal connector, isocyanides could be inserted into metal–carbon and metal–heteroatom bonds to construct double C(sp2)–X bonds.5 On the other hand, isocyanides could transform into heteroatomic molecules with electrophiles, nucleophiles and radicals.6 Although many elegant studies have been reported, the above methods are largely limited by the pre-functionalization of the substrate, the toxicity of metals or tedious synthesis steps. From the point of synthetic efficiency and economy, exploiting a novel, efficient, and diverse radical strategy to access double C(sp2)–X bonds under mild conditions and with broad functional group tolerance is of paramount importance and in urgent demand.Radical transformation processes are ubiquitous throughout synthesis chemistry and provide new ideas for forging new bonds and novel molecules, especially valuable product motifs.7 As a complementary strategy to conventional radical-based reactions, electrochemistry, effectively transferring electrons from the electrode surface to the substance, has been developed into a powerful synthetic technique toward radical chemistry.8 This electrochemical strategy further stimulated a resurgence of interest in radical chemistry with good atom-economy and step-economy.9 Myriad electrochemical-induced radical reactions have been reported via single-electron oxidation/reduction with a plethora of radicals and radical acceptors. As reported, alkenes, alkynes, and cyano and aromatic compounds could be considered to be favorable radical acceptors in diverse transformations, such as cross-coupling, cyclization and difunctionalization reactions.10 However, the application of isocyanides as radical acceptors is limited in utility due to electrochemical tandem cyclization.11 Therefore, on the basis of our research on electrochemical oxidative functionalization of isocyanides,12 we continued to explore the properties of isocyanides as radical acceptors under electrochemical conditions.Initially, we commenced our investigations by using abundant and inexpensive phenyl disulfide (1), ethyl 2-isocyanoacetate (2) and 1H-benzo[d][1,2,3]triazole (3) as model substrates in a single operation via a three-component cross-coupling. After systematic optimization, the isothiourea 21 could been obtained in 90% isolated yield. To gain insights into the reaction process, we continued to carry out a series of control experiments as shown in Scheme 1. The control experiment demonstrated that electricity is indispensable. Under standard conditions, addition of 2.0 equivalents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) showed no traces of product. Similarly, the reaction was suppressed in the presence of butylated hydroxytoluene (BHT). The P(OEt)3-trapping product could be detected by gas chromatography mass spectrometry (GCMS). Simultaneously, a S-centred radical signal (g = 2.0070, AN = 13.40 G, AH = 14.88 G) was quickly trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) via electron paramagnetic resonance (EPR) experiments. The reported results revealed that this reaction might proceed via S-radical pathways.Open in a separate windowScheme 1Control experiments.For deeper research of the priority of interaction for isocyanides vs. other radical acceptors with radicals, we sought to conduct robustness screening of a wide range of radical acceptors as shown in Scheme 2.13 The addition of an aryl olefin led to the complete shutdown of product formation (21) and the products of difunctionalization of alkenes were also not detected. To our delight, the alkenyl moiety did not affect the reaction efficiency under the electrochemical conditions. Unlike the aryl olefin, the addition of phenylacetylene did not inhibit product formation (21), delivering a yield of 93%. Similarly, ethyl 2-isocyanoacetate could be transformed into product (21) smoothly with 1-heptyne. The addition of mesitylene preserved the yield, while the yield decreased slightly with anisole. With the addition of furan and thiophene, an excellent yield of product (21) could still be obtained. Beside electron-donating arenes, we continued to add electron-withdrawing arenes to the reaction system. As expected, a satisfactory yield was obtained with 4-cyanopyridine. The results revealed that the electrochemical reaction exclusively occurred at the isocyano part regardless of the presence of electron-withdrawing arenes, electron-donating arenes and the alkynyl moiety, even the alkenyl moiety, which are also susceptible to radical conditions.Open in a separate windowScheme 2Competitive experiments of isocyanides vs. other radical acceptors with radicals. Conditions: 1 (0.15 mmol), 2 (0.6 mmol), 3 (0.5 mmol), R. A. = radical acceptors (0.6 mmol), nBu4NBF4 (0.5 mmol), MeCN (6 mL), cloth anode, Pt cathode, undivided cell, constant current = 10 mA, room temperature, N2, 2.25 h. 1HNMR yield, dibromomethane as an internal standard.In order to further investigate the compatibility, we firstly examined the substrate scope of alkyl disulfides for the synthesis of isothioureas with ethyl 2-isocyanoacetate (2) and 1H-benzo[d][1,2,3]triazole (3) as shown in Scheme 3. To our delight, the yields did not decrease significantly with the increase of the carbon chain from methyl to decyl in this transformation (4–7). Isopropyl, isobutyl, cyclopentyl and cyclohexyl were well tolerated with good to excellent yields (8–11). Substances, containing sensitive benzylic C–H bonds, were tolerated to access novel isothioureas in this electrochemical induced-radical process (12–14, 34). Afterwards, we continued to explore the applicability from alkyl disulfides to thiophenol and a series of molecule isothioureas were obtained successfully with satisfactory yield. Thiophenol, containing electron-neutral (F, Cl, Br, H), electron-withdrawing (OCF3, CF3, and CO2Me) and electron-donating (Me, Et, tBu, OMe, and SMe) groups, could smoothly transform to realize this process with high stereoselectivity under mild conditions (15–26). The structure of Z-conformer (16) was confirmed by X-ray crystallographic analysis. In addition, this protocol was successfully applied to thiophenols bearing diverse groups at different positions with good yields, indicating that steric hindrance has no obvious effect (20, 27–31). With curiosity, we tried to evaluate the tolerance of diselenides to construct novel Se–C–N bonds simultaneously. Unexpectedly, regardless of alkyl diselenides (32–33), benzyl diselenide (34) or aryl diselenide (35), all were well tolerated under electrochemical conditions, providing a series of unprecedented isoselenoureas, which were inaccessible by conventional methods. The compatibility of sensitive functional groups provides an opportunity for further molecular modification. The sensitive functional architectures including but not limited to ester (36), benzyloxy (37), allyl and allyloxy as well as endene (38, 41–44), labile alkyl chloride (39) and alkyl bromide (40), propargyl (44), and thiophene (45), all remained intact, enriching the diversity of heteroatom compounds. The merit of this methodology was further demonstrated by elaboration of a wide gamut of functional molecules and drug molecules to diverse isothioureas. Natural products including l-menthol and geraniol (46–47), food additives including isopulegol and furfuryl alcohol (48–49), and pharmaceuticals including ibuprofen (50) were apt to give rise to the corresponding isothioureas in 50–78% yields.Open in a separate windowScheme 3Scope of thiophenols/disulfides/diselenides. Conditions: a disulfides/diselenides (0.15 mmol) or b thiophenols (0.3 mmol), isocyanides (0.6 mmol), 1H-benzotriazole (0.5 mmol), nBu4NBF4 (0.5 mmol), MeCN (6 mL), cloth anode, Pt cathode, undivided cell, constant current = 10 mA, room temperature, N2, 2.25 h. Isolated yield.After defining the scope of thiophenols and disulfides, we turned our attention to explore the substrate scope with respect to nucleophiles in Scheme 4. Benzotriazole, with mono-substitution or multi-substitution, could be efficiently converted to the corresponding skeletons in 55–75% yields (51–54). Under standard conditions, pyrazole also showed great reactivity with phenyl disulfide or ethyl disulfide (55–56). The introduction of a halogen group in pyrazolylcycle, especially a subtle C–I bond, was compatible with satisfactory results (57–59, 64–65). 4-Methyl-1H-pyrazole as a coupling partner also realized the aminosulfenylation of isocyanide, albeit less efficiently (62). Of note is that the yield was increased to 70% from 40% by replacing methyl with phenyl (63). In addition to benzotriazole and pyrazole derivatives, other triazoles and tetrazole were proved to be viable coupling partners as well, enabling access to the target products in synthetically useful yields (66–70). Subsequently, with this established-optimized condition, we set out to investigate substrates for isocyanide coupling partners. With methyl isocyanoacetate (71), a similar effect was observed in an electrochemical difunctionalization reaction. As expected, both tosylmethyl isocyanide and benzyl isocyanide were demonstrated to be competent substrates (72–73). Cyclohexyl isocyanide, as a representative of secondary isocyanides, converted into the corresponding product (74). Gratifyingly, isocyanides, regardless of the steric effect, could engage with thiophenols to give the corresponding adducts in good yields (75–76). Aryl isocyanides however afforded the desired products in low yields under standard reaction conditions (77–78).Open in a separate windowScheme 4Scope of azazoles. Conditions: a disulfides/diselenides (0.15 mmol) or b thiophenols (0.3 mmol), isocyanides (0.6 mmol), azazoles (0.5 mmol), nBu4NBF4 (0.5 mmol), MeCN (6 mL), cloth anode, Pt cathode, undivided cell, constant current = 10 mA, room temperature, N2, 2.25 h. Isolated yield.To evaluate the feasibility of this electrochemical protocol, we monitored the reaction on a 4.5 mmol scale as shown in Scheme 5. Under similar conditions, by prolonging the reaction time to 34 h, a good isolated yield of 72% was obtained, which provided an opportunity for further synthetic manipulations.Open in a separate windowScheme 5Gram-scale synthesis.In order to account for the stereoselectivity of products, theoretical calculations were performed. The result demonstrated that the free energy of the Z-conformer of the product 16 is 2.3 kcal mol−1 smaller than that of the E-conformer.Based on a previously reported mechanistic study14 and these above observations, a synthetically possible mechanism for the electrochemical intermolecular difunctionalization reaction is depicted in Scheme 6. A sulfur radical was formed via single-electron-transfer (SET) reduction of the disulfide or SET oxidation of the thiophenol. Subsequently, the exclusive capture of the S-radical by the isocyano part yields the imine C-radical I. Further SET oxidation of this radical intermediate to the corresponding imine carbocation II, followed by nucleophilic trapping intermolecularly, affords the final isothioureas.Open in a separate windowScheme 6Proposed reaction mechanism.  相似文献   

15.
Correction for ‘Hydrogen-activation mechanism of [Fe] hydrogenase revealed by multi-scale modeling’ by Arndt Robert Finkelmann et al., Chem. Sci., 2014, 5, 4474–4482, DOI: 10.1039/C4SC01605J.

The authors regret that there were minor typographical errors in two figures. In Fig. 9 and and11,11, the internuclear distances were swapped. The Fe-bound hydrogen atoms are affected, where Hp is the hydrogen atom proximal to the oxypyridine ligand and Hd is the hydrogen atom distal to the oxypyridine ligand. In Fig. 9, left panel, the distance between Hp and the oxypyridine O atom was given as 1.82 Å and the distance between Hp and the Fe atom was given as 1.7 Å. However, it should read 1.82 Å between Hp and Fe and 1.70 Å between Hp and the oxypyridine O atom. In Fig. 11, top left panel, the distance between Hp and Fe was shown to be 1.70 Å and the distance between Hd and Fe was given as 1.73 Å. However, it should read 1.73 Å between Hp and Fe and 1.70 Å between Hd and Fe. The correct versions of these figures are given below. The results and conclusions are not affected by these typographical errors.Open in a separate windowFig. 9QM/MM-optimized reactant (left) and product (right) structures of the H2 cleavage reaction for the scenario with oxypyridine ligand. Distances are given in Å.Open in a separate windowFig. 11Top row: structures of the H2 adduct for the second scenario with neutral pyridinol; the pyridinol OH can be oriented away from Fe (top left) or towards Fe (top right). Bottom row: products of H2 cleavage, with the proton transferred to the thiolate; with the hydroxyl oriented away from Fe (bottom left) and towards Fe (bottom right). Distances are given in Å; relative energies with respect to the favoured adduct are indicated in red in kcal mol−1.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

16.
We report a photochemically induced, hydroxy-directed fluorination that addresses the prevailing challenge of high diastereoselectivity in this burgeoning field. Numerous simple and complex motifs showcase a spectrum of regio- and stereochemical outcomes based on the configuration of the hydroxy group. Notable examples include a long-sought switch in the selectivity of the refractory sclareolide core, an override of benzylic fluorination, and a rare case of 3,3′-difluorination. Furthermore, calculations illuminate a low barrier transition state for fluorination, supporting our notion that alcohols are engaged in coordinated reagent direction. A hydrogen bonding interaction between the innate hydroxy directing group and fluorine is also highlighted for several substrates with 19F–1H HOESY experiments, calculations, and more.

We report a photochemical, hydroxy-directed fluorination that addresses the prevailing challenge of high diastereoselectivity. Numerous motifs showcase a range of regio- and stereochemical outcomes based on the configuration of the hydroxy group.

The hydroxy (OH) group is treasured and versatile in chemistry and biology.1 Its ubiquity in nature and broad spectrum of chemical properties make it an attractive source as a potential directing group.2 The exploitation of the mild Lewis basicity exhibited by alcohols has afforded several elegant pathways for selective functionalization (e.g., Sharpless epoxidation,3 homogeneous hydrogenation,4 cross-coupling reactions,5 among others6). Recently, we reported a photochemically promoted carbonyl-directed aliphatic fluorination, and most notably, established the key role that C–H⋯O hydrogen bonds play in the success of the reaction.7 Our detailed mechanistic investigations prompt us to postulate that other Lewis basic functional groups (such as –OH) can direct fluorination in highly complementary ways.8 In this communication, we report a hydroxy-directed aliphatic fluorination method that exhibits unique directing properties and greatly expands the domain of radical fluorination into the less established realm governing high diastereoselectivity.9Our first inclination that functional groups other than carbonyls may influence fluorination regiochemical outcomes was obtained while screening substrates for our published ketone-directed radical-based method (Scheme 1).8a In this example, we surmised that oxidation of the tertiary hydroxy group on substrate 1 cannot occur and would demonstrate functional group tolerance (directing to C11, compound 2). Surprisingly, the two major regioisomers (products 3 and 4) are derivatized by Selectfluor (SF) on C12 and C16 – indicative of the freely rotating hydroxyl directing fluorination. Without an obvious explanation of how these groups could be involved in dictating regiochemistry, we continued the mechanistic study of carbonyl-directed fluorination (Scheme 2A). We established that the regioselective coordinated hydrogen atom abstraction occurs by hydrogen bonding between a strategically placed carbonyl and Selectfluor radical dication (SRD).7 However, we noted that the subsequent radical fluorination is not diastereoselective due to the locally planar nature of carbonyl groups. Thus, we posed the question: are there other directing groups that can provide both regio- and diastereoselectivity? Such a group would optimally be attached to a sp3 hybridized carbon; thus the “three dimensional” hydroxy carbon logically comes to mind as an attractive choice, and Scheme 1 illustrates the first positive hint.Open in a separate windowScheme 1Observed products for the fluorination of compound 1.Open in a separate windowScheme 2(A) Proposed mechanism, (B) β-caryophyllene alcohol hypochlorite derivative synthetic probe, (C) isodesmic relation of transition states showing the general importance of the hydroxy group to reactivity (ωB97xd/6-31+G*), and (D) 1H NMR experiment with Selectfluor and various additives at different concentrations.We began our detailed study with a simple substrate that contains a tertiary hydroxyl group. Alcohol 5 was synthesized stereoselectively by the reaction of 3-methylcyclohexanone, FeCl3, and 4-chlorophenylmagnesium bromide;10 the 4-chlorophenyl substituent allows for an uncomplicated product identification and isolation (aromatic chromophore). We sought to determine optimal reaction conditions by examination of numerous photosensitizers, bases, solvents, and light sources (7 Although we utilize cool blue LEDs (sharp cutoff ca. 400 nm), CFLs (small amount of UVB (280–315 nm) and UVA (315–400 nm)) are useable as well.11 A mild base additive was also found to neutralize adventitious HF and improve yields in the substrates indicated (
EntrySensitizer 19F yield
1None0%
2 Benzil 83%
3Benzil, no base63%
4Benzil, K2CO368%
5Benzil, CFL light source75%
65-Dibenzosuberenone15%
74,4′-Difluorobenzil63%
89,10-Phenantherenequinone71%
9Perylene8%
10Methyl benzoylformate42%
Open in a separate windowaUnless stated otherwise: substrate (0.25 mmol, 1.0 equiv.), Selectfluor (0.50 mmol, 2.0 equiv.), NaHCO3 (0.25 mmol, 1.0 equiv.), and sensitizer (0.025 mmol, 10 mol%) were dissolved in MeCN (4.0 mL) and irradiated with cool white LEDs for 14 h.Substrate scopea
Open in a separate windowaUnless otherwise specified, the substrate (0.25 mmol, 1.0 equiv.), Selectfluor (0.50 mmol, 2.0 equiv.), NaHCO3 (0.25 mmol, 1.0 equiv. or 0.0 equiv.), and benzil (0.025 mmol 10 mol%) were stirred in MeCN (4.0 mL) and irradiated with cool white LEDs for 14 h. Yields were determined by integration of 19F NMR signals relative to an internal standard and confirmed by isolation of products through column chromatography on silica gel. Yields based on recovered starting material in parentheses. Major diastereomer (with respect to C–F bond) depicted where known.b1.2 equiv. of Selectfluor used.c1.0 equiv. of NaHCO3.d0.0 equiv. of NaHCO3.e3.0 equiv. of Selectfluor used.fIncluding the monofluoride (approx. 11%) with starting material.The screening concurrently buttresses our claim that hydroxy-directed fluorination is proceeding through a mechanism involving a network of C–H⋯OH hydrogen bonds.12 Other N–F reagents (for example, N-fluorobenzenesulfonimide and N-fluoropyridinium tetrafluoroborate) do not provide the desired fluorinated product 6. The 1,3-diaxial relationship shown in Fig. 1 presents an intramolecular competition: tertiary vs. secondary C–H abstraction (O⋯H–C calculated distances: 2.62 and 2.70 Å at B3LYP 6-311++G**, respectively). The tertiary fluoride is the major product in this case.Open in a separate windowFig. 1Example of an intramolecular competition (secondary vs. tertiary C–H abstraction/fluorination) and calculated C–H⋯O distances of compound 5 (B3LYP/6-311++G**).With optimized conditions established, we assessed the site-selectivity of the method with a molecule derived from the acid catalyzed cyclization of α-caryophyllene, β-caryophyllene alcohol (commonly used as a fragrance ingredient in cosmetics, soaps, and detergents).13 When subjected to fluorination conditions, it targets the strained cyclobutane ring (substrate 7) in 52% yield (14 The hydroxy group stereochemistry is poised to direct fluorination to either the C8 or C10 positions (compound 9) due to the plane of symmetry (Fig. 3A). Moreover, we synthesized a complementary derivative through PCC oxidation followed by a Grignard reaction, thereby switching directionality of the hydroxy group (Fig. 3A) to target the C3 or C5 positions instead (compound 8). We found the resultant fluorinated products to be what one expects if engaged in coordinated hydrogen atom transfer (HAT) (55% and 40% for molecules 9 and 8) – a change in regiochemistry based on the stereochemistry of the alcohol. Additionally, only a single stereoisomer is produced for both (d.r. 99 : 1) and reinforce this study as a salient example of diastereoselective radical fluorination.Open in a separate windowFig. 3Examples of hydroxy group stereochemical switches.In the midst of characterizing compound 9, we uncovered a noteworthy hydrogen bonding interaction. Firstly, our plan was to identify the –OH peak within the 1H NMR spectrum and determine if there is a through-space interaction with fluorine in the 19F–1H HOESY NMR spectrum (ultimately aiding in assigning the stereochemistry of the fluorine).15 At first glance, no peaks were immediately discernible as the –OH; however, when a stoichiometric amount of H2O is added, it becomes apparent that the –OH group and geminal proton to the hydroxy peaks broaden by rapid proton exchange (Fig. 2A). Upon closer examination of the dry 1H NMR spectrum, the –OH peak appears to be a sharp doublet of doublets: one bond coupling to the geminal C–H proton of 9 Hz and one of the largest reported through-space couplings to fluorine of 20 Hz. The 19F–1H HOESY spectrum also supports our regio- and stereochemical assignment – a strong interaction between fluorine and Ha, Hb, and Hd, as well as no apparent interaction with Hc and He (Fig. 2B). Consequently, we postulate that intramolecular hydrogen bonding is responsible for the considerable coupling constant. This conclusion is also supported by calculations at B3LYP/6-311++G** (Fig. 2C): the O–H–F angle is given as 140° and F⋯H–O bond distance is 1.97 Å.Open in a separate windowFig. 2(A) Top spectrum (pink) has broadened peaks due to adventitious H2O in solution. (B) Strong interaction observed between the installed fluorine and designated hydroxy proton in the 19F–1H HOESY NMR spectrum. (C) Calculated structure for compound 9 at B3LYP/6-311++G* revealing the hydroxy proton aiming toward the fluorine.Appreciating the complexity and biological significance of steroids,16 we derivatized dehydroepiandrosterone to afford fluorinated substrate 10 (42%; d.r. 99 : 1). Computational modeling assisted in verifying that the β-hydroxy group targets the C12 position (B3LYP/6-311++G**); furthermore, the β-fluoro isomer is the major product (validated by NOESY, 1H, and 19F NMR). Additionally, we subjected 17α-hydroxyprogesterone (endogenous progestogen steroid hormone17) to fluorination conditions and found the α-fluoro product (11) as the major diastereomer in 55% yield (99 : 1 d.r.). To investigate further the notion of coordinated fluorination and explanation of the observed stereoisomers (e.g., β-hydroxy/β-fluoro and α-hydroxy/α-fluoro), we calculated a simplified system comparing the fluorination of 1-propyl radical and γ-propanol radical (Scheme 2C). The reaction can be distilled into two key steps: a site-selective HAT, followed by a diastereoselective fluorination reaction. The following isodesmic relation (ωB97xd/6-31+G*, −7.63 kcal mol−1) illustrates the stabilizing energetic role that the hydroxy group plays in commanding diastereoselectivity. The transition states represent low barrier processes; a solvent dielectric was necessary to find saddle points.Additionally, a simple Protein Data Bank (PDB) survey showed numerous intermolecular close contacts between hydroxy groups and H–C–+NR3 moieties.18 What is more, solutions of Selectfluor with various alcohols at different concentrations reveal characteristic H–C–+NR3 downfield chemical shifts in the 1H NMR spectra (Scheme 2D).19 Both of these observations buttress the claim of a putative hydrogen bonding interaction between Selectfluor and the hydroxy group.We theorize that the regioselective HAT step proceeds similarly to the reported carbonyl-directed pathway (Scheme 2A) involving Selectfluor radical cation coordination (considering the likenesses in conditions and aforementioned Lewis basicity logic). Alternatively, one can imagine the reaction proceeding through a Barton20 or Hofmann–Löffler–Freytag21 style mechanism. To probe this possibility, we employed a β-caryophyllene alcohol hypochlorite derivative to form the alkoxy radical directly, and found that under standard conditions there is complex fragmentation and nonselective fluorination (Scheme 2B). Lastly, we compared the hydroxy versus carbonyl group SF coordination computationally. The carbonyl group is preferred to bind to SF through nonclassical C–H⋯O hydrogen bonds preferentially over the hydroxy group, as the following isodesmic relation shows (acetone and t-BuOH as models; ωB97xd/6-31+G*, −3.81 kcal mol−1), but, once again, rigidity and propinquity are ultimately more important factors in determining directing effects (Scheme 3).Open in a separate windowScheme 3Isodesmic equation comparing carbonyl versus hydroxy group Selectfluor coordination.The tetrahedral nature of hydroxy groups provides unique access to previously unobtainable sites. For example, we compared menthol and an alkylated congener to form products 12 and 13 (Fig. 3B). The hydroxy group in the precursor to 12 is in the equatorial position, mandating the exocyclic isopropyl group as the reactive site (40% yield).22 In the precursor to 13, the methyl and isopropyl substituent lock the hydroxy group into the axial position, targeting its endocyclic tertiary site through a 1,3-diaxial relationship to afford fluorinated product in 57% yield (d.r. 99 : 1). In all, the comparison showcases the versatility in directing ability, offering a choice of regio- and stereoselectivity based on the stereochemistry of the hydroxy group. The directing system only necessitates two features based on our results: (1) the hydroxy group must be either secondary or tertiary (primary tends to favor oxidation) and (2) the oxygen atom must be within the range of 2.4–3.2 Å of the targeted secondary or tertiary hydrogen.Among the several biologically active compounds we screened, caratol derivatives 14 and 15 were found to be attractive candidates that reveal directed fluorination to an exocyclic isopropyl group (23).24 After extraction, isolation, and derivatization, molecules 14 and 15 are afforded in 65% and 83% yield (25 Groves,9f Britton,26 and others.27 The derived alcohol finally overrode this natural tendency and directed to the predicted position in 56% (d.r. 99 : 1) (product 16). Smaller amounts of competitive polar effect fluorination were observed at the C2 and C3 positions, highlighting how challenging a problem the functionalization of the sclareolide core presents.28,29An altered dihydroactinidiolide was found to participate in the fluorination through a 1,3-diaxial guided HAT and fluorination in 55% yield (product 17, d.r. 99 : 1). We next modeled several more substrates that participated in similar 1,3 relationships; however, each exhibited a variation from one another (e.g., ring size or fused aromatic ring). Products 19 and 18 displayed the reaction''s capability to direct to the desired positions with an expanded (65%; d.r. 99 : 1) and reduced (45%; d.r. 99 : 1) ring system when compared to the previous 6-membered ring examples. Additionally, we examined a methylated α-tetralone derivative. The desired 3-fluoro product 20 forms in 43% yield (d.r. 99 : 1), overriding benzylic fluorination (Scheme 4).30 Under identical conditions α-tetralone provides 4-fluorotetralone in 48% yield. In similar motif, 1-phenylindanol, we intentionally targeted the benzylic position in a 90% and 10 : 1 d.r. (product 21). Unlike the methylated α-tetralone derivative, the geometry of the starting material calculated at B3LYP/6-311++G** shows the hydroxy group is not truly axial and is 4.30 Å from the targeted C–H bond, explaining the dip in diastereoselectivity.Open in a separate windowScheme 4Comparing fluorination outcomes for different functional groups.Next, we examined an isomer of borneol that is widely used in perfumery, fenchol.31 The secondary alcohol displays a diastereoselective fluorination in 38% (d.r. 99 : 1) (product 22). Our last designed motif was ideally constructed to have a doubly-directing effect. Our observations show that a well-positioned hydroxy group not only provides sequential regioselective hydrogen atom abstraction but also displays a powerful demonstration of Selectfluor guidance to afford the cis-difluoro product (23) in 33% yield (85% brsm, d.r. 99 : 1). Spectroscopically (1H, 13C, and 19F NMR), the product possesses apparent Cs symmetry and showcases close interactions (e.g., diagnostic couplings and chemical shifts). cis-Polyfluorocycloalkanes are of intense current interest in materials chemistry, wherein faces of differing polarity can complement one another.32All in all, this photochemical hydroxy-directed fluorination report represents one of the first steps in commanding diastereoselectivity within the field of radical fluorination. An ability to dictate regio- and stereoselectivity is demonstrated in a variety of substrates by simply switching the stereochemistry of the hydroxy group. Computations support the key role of Selectfluor coordination to the key hydroxy group in the fluorination step. Future studies will seek to uncover other compatible Lewis basic functional groups, expanding further the versatility of radical fluorination.  相似文献   

17.
Access to chiral β-sulfonyl carbonyl compounds via photoinduced organocatalytic asymmetric radical sulfonylation with sulfur dioxide     
Fu-Sheng He  Chun Zhang  Minghui Jiang  Lujun Lou  Jie Wu  Shengqing Ye 《Chemical science》2022,13(30):8834
An organocatalytic enantioselective radical reaction of potassium alkyltrifluoroborates, DABCO·(SO2)2 and α,β-unsaturated carbonyl compounds under photoinduced conditions is developed, which provides an efficient pathway for the synthesis of chiral β-sulfonyl carbonyl compounds in good yields with excellent enantioselectivity (up to 96% ee). Aside from α,β-unsaturated carbonyl compounds with auxiliary groups, common chalcone substrates are also well compatible with this organocatalytic system. This method proceeds through an organocatalytic enantioselective radical sulfonylation under photoinduced conditions, and represents a rare example of asymmetric transformation involving sulfur dioxide insertion.

A photoinduced organocatalytic enantioselective radical reaction is developed, affording chiral β-sulfonyl carbonyl compounds in good yields with excellent enantioselectivity (up to 96% ee).  相似文献   

18.
Regioselective catalytic carbonylation and borylation of alkynes with aryldiazonium salts toward α-unsubstituted β-boryl ketones     
Fengxiang Zhu  Pengpeng Yin  Xiao-Feng Wu 《Chemical science》2022,13(41):12122
A new Pd/Cu-catalyzed carbonylation and borylation of alkynes with aryldiazonium salts toward α-unsubstituted β-boryl ketones with complete regioselectivity has been developed. This transformation shows broad substrate scope and excellent functional-group tolerance. Moreover, the obtained 1,2-carbonylboration products provide substantial opportunities for further transformations which cannot be obtained by known carbonylation procedures. Preliminary mechanistic studies indicate that the three hydrogen atoms of the products originated from ethyl acetate.

A multi-component procedure on the carbonylative and hydroborative synthesis of β-boryl ketones has been developed with alkynes, B2pin2 and aryldiazonium salts as the substrates and using ethyl acetate as the reagent and solvent.

Construction of boro-containing organic molecules remains an important and hot research field due to their wide applications in materials science,1 pharmaceuticals2 and organic chemistry.3 A multitude of methods have been developed for the synthesis of organoboron compounds over the past decades.4 Among these methods, transition-metal-catalyzed borofunctionalization of alkynes is a powerful synthetic strategy due to its high selectivity and efficiency.5 For example, the use of copper as a precatalyst for the borylation of alkynes has generated renewed interest in the area. The β-borylalkenylcopper intermediates obtained via syn addition of borylcopper to alkynes can electrophilically trap various electrophiles to form different alkenylboronates (Scheme 1, 1). The classical approach of this type of transformation is alkyne hydroboration (Scheme 1, 1a).6 Subsequently, with vinylcopper species as the proposed key intermediates, their further reactions with halogen substitutes (Scheme 1, 1b),7 CO2 (Scheme 1, 1c),8 allyl phosphates (Scheme 1, 1d),9 and tin alkoxides (Scheme 1, 1e)10 to give the corresponding alkenylboronates were reported. More recently, Mankad and Cheng reported their achievements on the direct efficient synthesis of tetrasubstituted β-borylenones using a copper-catalyzed four-component coupling reaction of simple chemical feedstocks: internal alkynes, alkyl halides, bis(pinacolato)diboron (B2pin2) and CO (Scheme 1, 1f).11 Inspired by their achievements and considering the advantage of a multicomponent borocarbonylation reaction, we developed a new Pd/Cu-catalyzed multi-component carbonylation and borylation reaction of alkynes, aryldiazonium salts, B2Pin2, ethyl acetate and CO to obtain saturated β-boryl ketones (Scheme 1, ,3).3). In addition, this new catalyst system can catalyze the regioselective functionalization of alkynes to obtain 2,1-carbonylboration products that are different from the 1,2-products by known transition-metal-catalyzed borylacylation (Scheme 1, ,2a)2a) and borocarbonylation (Scheme 1, ,2b)2b) of alkenes.12 Nevertheless, the carbonylative and hydroborative coupling of alkynes with aryldiazonium salts to obtain saturated β-boryl ketones is still a challenge and has never been reported.Open in a separate windowScheme 1Strategies for borofunctionalization.Open in a separate windowScheme 2Scope of alkynes. Reaction conditions: 1 (0.1 mmol, 1 equiv.), B2pin2 (0.2 mmol, 2 equiv.), 2a (0.1 mmol, 1 equiv.), Pd(acac)2 (5 mol%), CuI (10 mol%), PPh3 (20 mol%), Na2CO3 (0.4 mmol, 4 equiv.), CO (20 bar), EA (with molecular sieves, water ≤ 50 ppm, 2 mL), stirred at 110 °C for 12 h, isolated yields.Open in a separate windowScheme 3Scope of aryldiazonium salts. Reaction conditions: 1a (0.1 mmol, 1 equiv.), B2pin2 (0.2 mmol, 2 equiv.), 2 (0.1 mmol, 1 equiv.), Pd(acac)2 (5 mol%), CuI (10 mol%), PPh3 (20 mol%), Na2CO3 (0.4 mmol, 4 equiv.), CO (20 bar), EA (with molecular sieves, water ≤ 50 ppm, 2 mL), stirred at 110 °C for 12 h, isolated yields.Initially, we tested various reaction conditions using phenyl acetylene (1a), 4-methoxybenzenediazonium tetrafluoroborate (2a) and bis(pinacolato)diboron as the reaction partners. To our delight, by using Pd(acac)2 and CuI as the cooperative precatalyst, PPh3 as the ligand, Na2CO3 as the base and ethyl acetate (EA) as the solvent at 110 °C under a CO atmosphere (20 bar) with 12 h reaction time, the desired borocarbonylative coupling product (3aa) was obtained in a good GC yield of 78% ( EntryVariation from the standard conditionsYield (%)1—782Using Pd(OAc)2 instead of Pd(acac)2443Using IPrCuCl instead of CuI414Using IMesCuCl instead of CuI385Using CuCl instead of Cul336Using CuCl2 instead of CuI317bCO (10 bar) instead of CO (20 bar)568PCy3 instead of PPh3Trace9cUsing DPPB instead of PPh3Trace10dUsing DPEPhos instead of PPh3Trace11Using tBuONa instead of Na2CO3—12Using Cs2CO3 instead of Na2CO3—13Using MeOH instead of CH3COOEt—14Using isopropanol instead of CH3COOEt—15Using DMF instead of CH3COOEt—16Using EAA instead of CH3COOEt—Open in a separate windowaReaction conditions: 1a (0.1 mmol, 1 equiv.), B2pin2 (0.2 mmol, 2 equiv.), 2a (0.1 mmol, 1 equiv.), Pd(acac)2 (5 mol%), CuI (10 mol%), PPh3 (20 mol%), Na2CO3 (0.4 mmol, 4 equiv.), CO (20 bar), CH3COOEt (2 mL), stirred at 110 °C for 12 h, yields were determined by GC analysis using hexadecane as the internal standard.bCO (10 bar).cDPPB: 1,4-bis(diphenylphosphino)butane (10 mol%).dDPEphos: bis[2-(diphenylphosphino)phenyl] ether (10 mol%). EAA: ethyl acetoacetate.With the optimal reaction conditions in hand, we initially investigated the scope of alkynes for this reaction with 4-methoxybenzenediazonium tetrafluoroborate (2a) (Scheme 2). First, a variety of aryl alkynes with electron-rich and electron-deficient groups at the para position were successfully converted to the desired products 3aa–3ga in good to excellent yields. Similarly, ortho/meta-substituted aryl alkynes could also be converted into the corresponding products in moderate to good yields (Scheme 2, 3ha–3ka). Importantly, 3-ethynylthiophene, as an example of a heterocyclic alkyne, can be successfully reacted as well, and a good yield of the targeted product was obtained (Scheme 2, 3la). Notably, aliphatic alkynes can be effectively transformed with 4-methoxybenzenediazonium tetrafluoroborate and afforded the corresponding products in good to excellent yields (Scheme 2, 3ma–3oa). However, aromatic/aliphatic diynes, internal alkynes, 3-phenyl-1-propyne and 3-methyl-1-butyne were ineffective in our procedure.Subsequently, with phenylacetylene (1a) as the model substrate, different aryl diazonium tetrafluoroborates were tested (Scheme 3). Aryl diazonium tetrafluoroborates with electronically neutral functional groups are all suitable substrates for this methodology and good yields can be achieved in all the tested cases (Scheme 3, 3ab–3ae). Methylthiol and phenyl groups were well tolerated under our conditions (Scheme 3, 3af–3ah). A good yield of the desired product can still be achieved with 1-naphthalenyl diazonium tetrafluoroborate (Scheme 3, 3ai). Halogen substituents can be tolerated as well, including fluoride and chloride, and good yields of the corresponding products can be obtained (Scheme 3, 3aj–3am). The bromide substituent, as an important functional group in cross-coupling transformations, can be tolerated and provide 59% of the desired product, which is ready for further functionalizations (Scheme 3, 3an).To understand the mechanism of this carbonylation process, a radical quenching experiment was designed to probe the mechanism of this reaction (Scheme 4). The reaction was fully inhibited when 3 equivalents of TEMPO were added to the model system (Scheme 4, a). The result shows that the radical intermediate may participate in the process. Next, we carried out the reaction in the absence of 4-methoxybenzenediazonium tetrafluoroborate (2a) and carbon monoxide, and alkenylboronic esters were obtained. Then 2a was added, and the reaction continued under the standard conditions but no corresponding product was produced (Scheme 4, b-b-1).1). Under identical reaction conditions, but in the absence of B2pin2, the carbonylative coupling product (4a) was obtained in an excellent GC yield of 95%. Surprisingly, the desired product 3aa could be obtained in 90% yield when B2pin2 was added (Scheme 4, b-b-22).Open in a separate windowScheme 4Mechanistic studies.Finally, to gain insight into the hydrogen source of this reaction, alkynone (4a) was subjected to standard conditions without any catalyst and CO (Scheme 4, c-c-1).1). The results revealed that the hydrogen source cannot come from the terminal hydrogen of phenylacetylene. No reaction occurred when the experiment was performed in ultra-dry solvent and 2 equivalents of water under standard conditions (Scheme 4, c-c-2),2), which indicated that water should not be a hydrogen source for this reaction. Interestingly, when using CD3COOEt as the solvent, the deuterated product 3aa-D could be obtained in 69% yield (Scheme 4, c-c-3).3). According to the reaction results, we believe that the hydrogen came from ethyl acetate.Based on the above control experiments and related literature,13,14 a possible reaction pathway is proposed (Scheme 5). Initially, Pd(0) precursor A will react with 2 to give the aryl Pd(ii) complex along with the release of N2. Subsequent CO insertion into the C–Pd bond affords palladium carbonyl intermediate B. Terminal alkynes 1 react with CuI to produce alkynyl Cu intermediate C, which will transmetalate with Pd(ii) species B. Then the produced palladium carbonyl intermediate D gives alkynone 4 and Pd(0) species by reductive elimination. Alkynone 4 together with B2pin2 in the presence of ethyl acetate will generate vinyl-boronate 5, and then another equivalent of B2pin2 will add to the carbon–carbon double bond allowing the formation of 1,1,2-tris(boronate) 6 which is not very stable under basic conditions.14 For this reason, compound 6 undergoes selective protodeboronation to generate 1,1-diboronate esters 7 which will undergo further protodeboronation to give the final product 3, and this part is most likely radical involved.Open in a separate windowScheme 5Proposed mechanism.In summary, we have described a convenient procedure to synthesize saturated β-boryl ketones via cooperative Pd/Cu-catalyzed multi-component carbonylation and borylation reaction of alkynes, aryldiazonium salts, B2pin2, ethyl acetate and CO. In addition, this reaction proceeds with broad scope and functional group tolerance, and delivers β-boryl ketones in moderate to excellent yields. Mechanistic research shows that the three hydrogen atoms come from ethyl acetate.  相似文献   

19.
Catalyst-controlled selective borocarbonylation of benzylidenecyclopropanes: regiodivergent synthesis of γ-vinylboryl ketones and β-cyclopropylboryl ketones     
Fu-Peng Wu  Xiao-Feng Wu 《Chemical science》2022,13(15):4321
Regioselective catalytic multi-functionalization reactions enable the rapid synthesis of complexed products from the same precursors. In this communication, we present a method for the regiodivergent borocarbonylation of benzylidenecyclopropanes with aryl iodides. Various γ-vinylboryl ketones and β-cyclopropylboryl ketones were produced in moderate to good yields with excellent regioselectivity from the same substrates. The choice of the catalyst is key for the regioselectivity control: γ-vinylboryl ketones were produced selectively with IPrCuCl and Pd(dppp)Cl2 as the catalytic system, while the corresponding β-cyclopropylboryl ketones were obtained in high regioselectivity with Cu(dppp)Cl, [Pd(η3-cinnamyl)Cl]2 and xantphos as the catalytic system. Moreover, γ-vinylboryl ketones and β-cyclopropylboryl ketones were successfully transformed into several other value-added products.

A novel procedure for regiodivergent borocarbonylation of benzylidenecyclopropanes has been developed. A variety of valuable γ-vinylboryl ketones and β-cyclopropylboryl ketones can be obtained selectively in excellent yields.  相似文献   

20.
Correction: Cu-catalyzed C–C bond formation of vinylidene cyclopropanes with carbon nucleophiles     
Jichao Chen  Shang Gao  Ming Chen 《Chemical science》2020,11(4):1177
Correction for ‘Cu-catalyzed C–C bond formation of vinylidene cyclopropanes with carbon nucleophiles’ by Jichao Chen et al., Chem. Sci., 2019, 10, 10601–10606.

We regret that in the original article the structure of compound 1 in Tables 1–3 was incorrect. The correct structure is given below.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号