首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(5):657-668
Abstract

An enzyme electrode was constructed from an oxygen electrode and a layer incorporating four enzyme systems for the sensitive determination of ADP and ATP. The cofactor is cycled between pyruvate kinase and hexokinase under formation of pyruvate which is detected by the coimmobilized, sequentially acting enzymes lactate dehydrogenase and lactate monooxygenase. The enzymatic recycling results in a 220-fold increased sensitivity to ADP compared to the unamplified reaction.  相似文献   

2.
Recently in our laboratory, up to 20 different enzymes and their genetic variants have been purified from mouse andDrosophila by affinity chromatography. By virtue of the specific coenzyme requirements, up to ten different enzymes could be copurified from a single tissue extract either by biospecific elutions with different coenzymes or inhibitors, or by sequential passages of the extract through several cofactor-related affinity columns. Important principles were developed to purify enzymes exhibiting low affinity to the affinity columns. By “affinity filtration” of the extract through the affinity column, enzymes of low affinity can be retarded and separated effectively from strongly bound and nonadsorbed proteins. By the “saturation readsorption” procedure, enzymes of low affinity could be effectively separated from those of high affinity by overloading of the extracts on the affinity columns. Readsorption of the leaked low affinity enzymes to a second affinity column often results in better enzyme purification because of the elimination of competitive high affinity enzymes. With the application of these principles, the following enzymes and their genetic variants were highly purified via a single- or two-step affinity column procedure: lactate dehydrogenase-A, lactate dehydrogenase-B, lactate dehydrogenase-X, phosphoglycerate kinase-A, phosphoglycerate kinase-B, cytoplasmic and mitochondrial isocitrate dehydrogenase, malate dehydrogenase, malic enzyme, glucose-6-phosphate dehydrogenase, glutathione reductase, phosphoglucose isomerase and pyruvate kinase from mouse tissues; alcohol dehydrogenase, malate dehydrogenase, α-glycerol-phosphate dehydrogenase, malic enzyme, and glucose-6-phosphate dehydrogenase fromDrosophila.  相似文献   

3.
Summary Enzyme electrodes were assembled by coupling membrane-immobilized lactate monooxygenase and coimmobilized lactate monooxygenase and lactate dehydrogenase, respectively, to oxygen electrodes. The lactate monooxygenase sensor was used for lactate determination with the analyzer Glukometer as well as for sequential measurement of lactate and lactate dehydrogenase activity.The bienzyme electrode is applicable for determining lactate and pyruvate in one measuring cycle. The operational parameters of the optimized sensors like measuring range, relative standard deviation, measuring frequency, and stability were studied. Determinations in biological fluids correlated well with spectrophotometric reference methods.  相似文献   

4.
李永生  杨微  李乔婧  周朗  高秀峰 《分析化学》2011,39(7):1058-1064
利用丙酮酸(PA)/还原型辅酶I(NADH)/乳酸脱氢酶(LDH)/氧化型辅酶I(NAD+)/乳酸(LA)荧光反应体系的正逆反应,建立了一种可直接用于临床检验、能同时测定血清中微量PA/LA的酶荧光毛细管分析法.本方法可在常规荧光光度计上,用普通玻璃毛细管同时实现了PA/LA的高灵敏分析,每次分析试剂和样品的用量仅9 ...  相似文献   

5.
《Analytical letters》2012,45(2):225-239
Abstract

The application of a pyruvate-sensing bienzyme electrode based on lactate dehydrogenase, lactate mono-oxygenase and an oxygen probe for pyruvate kinase (PK) determination in erythrocytes is described. PK can be measured in the range 0.12 – 1.85 μmol/(s1) with good reproducibility and good agreement with the conventional method. Coimmobilization of PK in the enzyme membrane leads to asensor for creatine kinase determination useful in the range 0.1 – 1.76 μmol/(s1).  相似文献   

6.
A coupled enzyme nylon tube reactor has been made by simultaneously immobilizing rabbit muscle pyruvate kinase (EC 2.7.1.40) and lactate dehydrogenase (EC 1.1.1.27) onto the inside surface of a nylon tube initially derivatized with poly (scl)-lysine to serve as a spacer molecule. The enzymes were covalently linked to the amino groups of the poly lysine spacer molecule by cross-linking with glutaraldehyde. The coupled enzyme system may be used in routine analysis to determine the concentrations of PEP, ADP, pyruvate, and NADH in a given solution and also to modify radioactively labeled nucleotides. The kinetic properties of the enzymes appear to be partially diffusion controlled as shown by an inverse relationship ofK m(app) values and activities to the flow rate of substrates through the tube reactor. This coupled enzyme system may be used as an indicator system when used in conjunction with other enzymes to complete a sequence of catalytic steps. An example of this is demonstrated in this paper by linking a nylon tube supported acetate kinase (EC 2.7.2.1) to this coupled enzyme system so that the three enzymes function in a series that facilitates the estimation of acetate.  相似文献   

7.
The enzyme couples horseradish peroxidase/glucose dehydrogenase, glucose oxidase/glucose dehydrogenase, and cytochrome b2/lactate dehydrogenase are applied in enzyme electrodes. Based on amplification by the recyclization reactions catalyzed by these two-enzyme systems, NADH, NAD+, glucose, lactate and pyruvate, are determined with 8–40-fold increased sensitivity compared to the unamplified reactions. Detection limits are 1.0 × 10?6 M NADH, 1.2 × 10?6 M NAD+, 8 × 10?7 M glucose, and 3 × 10?7 M lactate or pyruvate.  相似文献   

8.
Phosphoenolpyruvate (PEP)-dependent kinases are central to numerous metabolic processes and mediate the production of adenosine triphosphate (ATP) by substrate-level phosphorylation (SLP). While pyruvate kinase (PK, EC: 2.7.1.40), the final enzyme of the glycolytic pathway is critical in the anaerobic synthesis of ATP from ADP, pyruvate phosphate dikinase (PPDK, EC: 2.7.9.1), and phosphoenolpyruvate synthase (PEPS, EC: 2.7.9.2) help generate ATP from AMP coupled to PEP as a substrate. Here we demonstrate an inexpensive and effective electrophoretic technology to determine the activities of these enzymes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). The generation of pyruvate is linked to exogenous lactate dehydrogenase (LDH), and the oxidation of reduced nicotinamide adenine dinucleotide (NADH) coupled to 2,6-dichloroindophenol (DCIP) and iodonitrotetrazolium chloride (INT) results in a formazan precipitate which is easily quantifiable. The selectivity of the enzymes is ensured by including either AMP or ADP and pyrophosphate (PP(i) ) or inorganic phosphate (P(i) ). Activity bands were readily obtained after incubation in the respective reaction mixtures for 20-30 min. Cell-free extract concentrations as low as 20 μg protein equivalent yielded activity bands and substrate levels were manipulated to optimize sensitivity of this analytical technique. High-pressure liquid chromatography (HPLC), two-dimensional (2-D) SDS-PAGE (where SDS is sodium dodecyl sulfate), and immunoblot studies of the excised activity band help further characterize these PEP-dependent kinases. Furthermore, these enzymes were readily identified on the same gel by incubating it sequentially in the respective reaction mixtures. This technique provides a facile method to elucidate these kinases in biological systems.  相似文献   

9.
Cancer cell metabolism is characterized by an enhanced uptake and utilization of glucose, a phenomenon known as the Warburg effect. The persistent activation of aerobic glycolysis in cancer cells can be linked to activation of oncogenes or loss of tumor suppressors, thereby fundamentally advancing cancer progression. In this respect, inhibition of glycolytic capacity may contribute to an anticancer effect on malignant cells. Understanding the mechanisms of aerobic glycolysis may present a new basis for cancer treatment. Accordingly, interrupting lactate fermentation and/or other cancer-promoting metabolic sites may provide a promising strategy to halt tumor development. In this review, we will discuss dysregulated and reprogrammed cancer metabolism followed by clinical relevance of the metabolic enzymes, such as hexokinase, phosphofructokinase, pyruvate kinase M2, lactate dehydrogenase, pyruvate dehydrogenase kinase and glutaminase. The proper intervention of these metabolic sites may provide a therapeutic advantage that can help overcome resistance to chemotherapy or radiotherapy.  相似文献   

10.
A simplified assay platform was developed to measure the activities of the key oxidoreductases in central carbon metabolism of various marine bacteria. Based on microplate assay, the platform was low-cost and simplified by unifying the reaction conditions of enzymes including temperature, buffers, and ionic strength. The central carbon metabolism of 16 marine bacteria, involving Pseudomonas, Exiguobacterium, Marinobacter, Citreicella, and Novosphingobium were studied. Six key oxidoreductases of central carbon metabolism, glucose-6-phosphate dehydrogenase, pyruvate dehydrogenase, 2-ketoglutarate dehydrogenase, malate dehydrogenase, malic enzyme, and isocitrate dehydrogenase were investigated by testing their activities in the pathway. High activity of malate dehydrogenase was found in Citreicella marina, and the specific activity achieved 22 U/mg in cell crude extract. The results also suggested that there was a considerable variability on key enzymes’ activities of central carbon metabolism in some strains which have close evolutionary relationship while they adapted to the requirements of the niche they (try to) occupy.  相似文献   

11.
A method for increasing the sensitivity of enzyme sensors based on biocatalytic accumulation of an intermediate product was investigated using a biospecific electrode consisting of an immobilized glucose dehydrogenase-lactate dehydrogenase-lactate monooxygenase membrane and an electrochemical oxygen probe. Addition of the analyte (glucose) and an excess of NAD+ to the background solution permits NADH to be biocatalytically preconcentrated in the enzyme membrane. When this reaction has approached equilibrium, the sensor signal is generated by injection of an excess of pyruvate, thus starting oxygen consumption catalysed by the sequential lactate dehydrogenase-lactate monooxygenase reaction. Glucose can be determined at concentrations between 10 and 100 μM. Compared with operation of the sensor without NADH preconcentration, the increase in the sensitivity to glucose is 18-fold in the current-time mode and 40-fold in the derivative current-time mode. The measuring regime permits interferences from the sample solution to be avoided.  相似文献   

12.
《Analytical letters》2012,45(16):1289-1300
Abstract

The use of polychlorotrifluoroethylene (PCTFE) particles packed in 5–10 cm × 0.4 cm ID columns for the immobilization of enzymes by hydrophobic adsorption is investigated. Enzyme binding capacity of PCTFE is about 0.2 mg/gm of polymer. PCTFE-immobilized lactate dehydrogenase, alcohol dehydrogenase, and urease-glutamate dehydrogenase are demonstrated to be useful for the determinations of pyruvate, ethanol, and urea, respectively. Immobilized enzyme lifetimes are generally about 1–2 months.  相似文献   

13.
A non‐natural cofactor and formate driven system for reductive carboxylation of pyruvate is presented. A formate dehydrogenase (FDH) mutant, FDH*, that favors a non‐natural redox cofactor, nicotinamide cytosine dinucleotide (NCD), for generation of a dedicated reducing equivalent at the expense of formate were acquired. By coupling FDH* and NCD‐dependent malic enzyme (ME*), the successful utilization of formate is demonstrated as both CO2 source and electron donor for reductive carboxylation of pyruvate with a perfect stoichiometry between formate and malate. When 13C‐isotope‐labeled formate was used in in vitro trials, up to 53 % of malate had labeled carbon atom. Upon expression of FDH* and ME* in the model host E. coli, the engineered strain produced more malate in the presence of formate and NCD. This work provides an alternative and atom‐economic strategy for CO2 fixation where formate is used in lieu of CO2 and offers dedicated reducing power.  相似文献   

14.
通过四氮唑蓝盐化合物(MTS)和重要氧化还原酶及其代谢物的试剂盒检测等方法, 考察了姜黄素对食管癌KYSE410细胞生长以及对细胞氧化还原状态和代谢的影响. 结果表明, 姜黄素对KYSE410细胞具有较强的抑制作用, 其IC50=17.9 μmol/L. 进一步研究发现, 姜黄素可引起细胞培养上层清液中超氧化物歧化酶(SOD)和丙二醛(MDA)水平发生变化. 当姜黄素浓度为40 μmol/L时, MDA水平比对照组提高了125.1%, 而SOD水平则降低了43.2%; 同时, 乳酸水平降低了44.4%, 乳酸脱氢酶的活性下降了58.2%, 丙酮酸激酶的活性升高了216.7%. 姜黄素可能通过干扰氧化还原途径, 致使发生脂质过氧化反应, 并抑制肿瘤细胞糖酵解作用, 进而抑制食管癌KYSE410细胞增殖.  相似文献   

15.
Hansen EH  Nørgaard L  Pedersen M 《Talanta》1991,38(3):275-282
A flow-injection system is described that incorporates a small column reactor containing two co-immobilized, synergistically operating oxidoreductases, allowing determination of minute amounts of substrates by means of enzyme amplification and subsequent chemiluminescence detection of the hydrogen peroxide generated in the repeated redox cycling. With lactate oxidase and lactate dehydrogenase, and taking advantage of the fact that the enzymatic degradation step and the ensuing detection step can be individually optimized, the FIA-system has been optimized by factorial experiments to yield an amplification factor of over 140 for each of the two substrates lactate and pyruvate. With a linear calibration range of 0-6muM, the limits of detection for the two species were 48 and 103nM, respectively, and the sampling rate was 50-60/hr. The optimized system has also been employed for assay of glucose by utilizing a column reactor with immobilized glucose oxidase and glucose dehydrogenase, but yielded amplification factors of only 3-4. The large discrepancy in the performance of the two enzyme systems is discussed.  相似文献   

16.
A non-natural cofactor and formate driven system for reductive carboxylation of pyruvate is presented. A formate dehydrogenase (FDH) mutant, FDH*, that favors a non-natural redox cofactor, nicotinamide cytosine dinucleotide (NCD), for generation of a dedicated reducing equivalent at the expense of formate were acquired. By coupling FDH* and NCD-dependent malic enzyme (ME*), the successful utilization of formate is demonstrated as both CO2 source and electron donor for reductive carboxylation of pyruvate with a perfect stoichiometry between formate and malate. When 13C-isotope-labeled formate was used in in vitro trials, up to 53 % of malate had labeled carbon atom. Upon expression of FDH* and ME* in the model host E. coli, the engineered strain produced more malate in the presence of formate and NCD. This work provides an alternative and atom-economic strategy for CO2 fixation where formate is used in lieu of CO2 and offers dedicated reducing power.  相似文献   

17.
The thermochemistry of the reduction of pyruvate to lactate, in the presence of nicotinamide adenine dinucleotide (reduced form); catalyzed by the enzyme lactate dehydrogenase, has been studied. After approximately 120 experiments, a best value for the enthalpy of reaction has been determined to be ?14.80±0.30 kcal mol?1. This reveals that the driving force for the reaction is almost completely enthalpic in nature. In addition, using the current methodology, it is possible to determine lactate dehydrogenase activity as low as 0.15 international units (325 Wroblewski units) per sample.  相似文献   

18.
A new AMP derivative substituted with spacer arms both at position N6 and C8 of the adenine moiety was synthesized and immobilized to Sepharose. To the immobilized ligand was subsequently coupled C8-substituted ATP in a solid-phase synthesis fashion yielding the bifunctional general ligand AMP-ATP. This affinity material was used in the separation of two major groups of enzymes, dehydrogenases and kinases. It was found that on passage of crude homogenates obtained from mouse kidney through the affinity column, several dehydrogenases and kinases were bound, which could be eluted separately using pulses of NADH and ATP, respectively. In the fractions obtained on NADH elution, lactate dehydrogenase, malate dehydrogenase, and α-glycerol phosphate dehydrogenase were found, whereas ATP eluted 3-phosphoglyceric acid kinase, pyruvate kinase, and aldolase.  相似文献   

19.
采用示差脉冲伏安法,在乳酸脱氢酶(LDH)酶促体系“丙酮酸盐 + NADH +H+ (?) 乳酸盐 + NAD+”中,通过检测NAD+还原峰电流的变化,测定了不同条件下(不同酶用量、缓冲液pH值以及温度)LDH的活性、酶促体系的米氏常数KmNADH以及最大反应速率vmax。并且在最佳实验条件下,通过检测LDH活性的改变,实验考察了3种纳米物质(ZnS,TiO2(R)和TiO2(A))对乳酸脱氢酶酶促体系的影响。  相似文献   

20.
Pyruvate membrane crossing and its lactate dehydrogenase‐mediated conversion to lactate in cells featuring different levels of expression of membrane monocarboxylate transporters (MCT4) were probed by dissolution dynamic nuclear polarization‐enhanced NMR. Hyperpolarized 13C‐1‐labeled pyruvate was transferred to suspensions of rodent tumor cell carcinoma, cell line 39. The pyruvate‐to‐lactate conversion rate monitored by dissolution dynamic nuclear polarization‐NMR in carcinoma cells featuring native MCT4 expression level was lower than the rate observed for cells in which the human MCT4 gene was overexpressed. The enzymatic activity of lactate dehydrogenase was also assessed in buffer solutions, following the real‐time pyruvate‐to‐lactate conversion speeds at different enzyme concentrations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号