首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了剪切作用对二次注射成型聚丙烯连接界面形态演变的影响.利用偏光显微镜研究了连接界面距离浇口不同区域和不同位置的形态差异,探索了连接界面形态的演变规律,通过改变注射压力和注射速度对其加以验证,并通过DSC分析证实了形态结构的差异.研究表明:剪切作用对连接界面形态的影响显著,在高剪切作用下分子链沿流动方向取向程度高,不利于其规整排列并沿垂直界面方向生成横晶;可以通过注射压力和注射速度来控制连接界面的剪切作用,从而得到具有完善横晶结构的连接界面形态.  相似文献   

2.
通过自主设计的动态保压注塑成型装置研究剪切应力场下聚丙烯(PP)熔体在近熔点处冷却结晶的晶体结构.用扫描电子显微镜(SEM)、示差扫描量热法(DSC)和广角X射线衍射(WAXD)分析了PP试样在近熔点处冷却后从表层到剪切层的结晶结构的变化.SEM研究表明,与传统注塑成型样品(SL)和剪切力场中高熔体温度下冷却得到的试样(DH)相比,近熔点附近冷却得到的PP试样(DL)从表层到剪切层的结晶结构和形态有明显变化.DL从表层到剪切层均生成了尺寸较大的取向结晶结构,无明显的串晶产生.DSC研究表明,与SL和DH相比,DL剪切层无脊纤维晶熔融峰且晶片熔融温度较高,证明其样品内部晶片尺寸较大.WAXD进一步研究显示,DL内部主要晶面(110,040和130)的结晶尺寸与SL和DH相比并没有发生明显改变.  相似文献   

3.
剪切作用下PA1010/PP共混物的形态与性能研究   总被引:1,自引:1,他引:0  
通过动态保压注射成型方法制备了聚酰胺1010/聚丙烯(PA1010/PP)共混物,并研究了形态与性能的关系.力学性能测试结果表明在熔体冷却过程中施加剪切可以大大提高共混物的拉伸强度、拉伸模量和缺口冲击强度,当PP的质量分数为20%时,共混物的缺口冲击强度达到21.3kJ/m2,是静态样的3倍多,拉伸强度达到50.9MPa,是静态样的1.5倍.扫描电镜(SEM)结果表明在动态保压样的横断面可以观察到剪切诱导的形态,中间是芯层,围绕着芯层的是剪切层,最外面是皮层,相区尺寸显著减小、分散相分散更趋均匀,特别是PP的质量分数为20%时,相区尺寸从原来的约3.9μm降低到约1.4μm.动态保压样机械性能的提高归因于剪切作用下独特相形态的形成,分子链沿流动方向的取向是拉伸强度提高的主要原因,而剪切使分散相颗粒变小和剪切层中分子链的取向是冲击强度提高的主要原因.  相似文献   

4.
聚丙烯熔体自干扰流动对其凝聚态取向效应的影响   总被引:2,自引:0,他引:2  
通过一种由两个浇口小流道共享一个分流道的新型浇口 ,使两股熔体流入型腔 ,并在型腔内产生自干扰流动 (SIF) .在平行于注射方向熔体会产生迭加效应 ,而在垂直于注射方向熔体会产生挤压作用 ,并形成横向流动 .探讨了这种自干扰流动对注射PP试样的取向效应的影响 .采用热收缩和X 射线衍射法分别对分子链取向和晶体取向进行了检测 .热收缩试验结果显示SIF样比常规流动 (CFP)试样具有较小的链取向 .透射X 射线衍射的检测结果表明SIF样和CFP样在剪切层晶体具有大的取向效应 ,SIF样晶体的取向度为 65 % ,而CFP样则为 79% .  相似文献   

5.
从注射制品形态控制和结构表征的角度探讨高分子材料加工-形态-性能之间的关系.研究中采用动态保压成型方法来制备注射样品,在注射成型过程中引入剪切应力场的作用,制得的样品表现出明显的多层次结构,从外向里分别为皮层、剪切层、芯层,表现出不同的相形态、结晶形貌以及取向行为.研究发现,剪切应力对聚烯烃的形态发展和结构变化具有重要影响.在剪切应力的作用下,聚烯烃共混物中分散相会发生变形、取向,从而导致共混物的相转变点发生移动;结晶形态从球晶转变为shish-kebab结构;聚烯烃共混物在高剪切应力下相容,低剪切下发生相分离;HDPE/PP共混物的注射制品中出现附生结晶等现象.  相似文献   

6.
利用自行研制的低频振动注射实验装置探讨HDPE振动注射试样力学性能和微观形态之间的关系 .实验中对常规注射和振动注射成型的试样力学性能和微观形态进行了对比实验 .SEM实验结果显示 ,振动注射制件芯层的形态由常规注射的球晶转变为垂直于振动波传递方向排列的片晶结构 ,在剪切层中同时存在串晶或柱状堆砌的片晶结构 .频率的改变 (0 相似文献   

7.
利用自行研制的低频振动注塑成型装置进行等规聚丙烯(iPP)试样的结构与性能研究.实验中对常规注射和振动注射成型的试样力学性能和微观形态进行了对比实验.采用低频振动注塑成型工艺实现了IPP试样的自增强,在190℃下进行注射,强度由常规试样的41.3 MPa最大提高到振动试样的48.4 MPa(振幅PA=59.4 MPa,振频FR=0.7 Hz),强度提高了17.2%;SEM显示常规试样芯层结构主要由球晶构成,振动注射使球晶在流动方向上变形、取向,晶粒尺寸得到细化;DSC表明振动注射促进熔融峰向高温漂移,晶体结晶更加完善,结晶度最大提高了12.1%;WAXD显示低频大振幅振动注塑有利于γ晶型的生成,γ晶型有利于试样实现自增强.  相似文献   

8.
通过自主设计的多流体多次注射成型装置研究二次剪切应力场和复杂温度场对高密度聚乙烯晶体形态发展的影响.用偏光显微镜(PLM)和扫描电子显微镜(SEM)分析了多流体多次注射成型(multi-fluid multi-injection molding,MFMIM)和传统注射成型(conventional injection ...  相似文献   

9.
层状共连续PA6/SEBS体系的结晶取向及其低膨胀化机理研究   总被引:1,自引:0,他引:1  
研究了注射成型尼龙6/苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(PA6/SEBS)体系中微结构形态,SEBS含量,PA6结晶取向对线膨胀系数(CLTE)的影响.研究表明,当SEBS含量超过20wt%,PA6/SEBS注射成型体系形成层状共连续结构时,可以明显地降低流动方向的热膨胀系数.TEM和WAXD分析表明,该层状共连续结构中不仅SEBS微层取向,而且大多数PA6片晶垂直于SEBS微层生长,其中晶胞b轴(PA6分子链)倾向于沿流动方向取向.程序升温WAXD研究表明,PA6/SEBS(60/40)体系中各晶轴的线膨胀系数差别很大,其中晶胞b轴为-5.8×10-5K-1.具有负膨胀系数的晶胞b轴沿着流动方向取向可能是除层状共连续结构效应以外导致材料低膨胀化的第二种驱动力.  相似文献   

10.
作为一种由常规注射成型发展起来的聚合物加工技术,气体辅助注射成型具有节约原材料、缩短成型周期以及提高制品性能等优点,已得到广泛的应用.由于气辅成型过程是一个在刚、柔双重约束界面条件下进行的多相复杂体系的多次流动过程,因而其形态结构的形成、发展和演化要远比常规注塑成型复杂.然而在气辅成型的形态结构方面,国内外的研究一直以来开展得较少.近年来,作者在聚合物及其共混物、复合材料气辅成型制品的形态结构方面已开展了广泛的研究工作,本文对这些工作和一些重要结果作了总结,并简要分析了成型过程中剪切场对形态演化的影响,最后对该研究方向的发展趋势作了展望.  相似文献   

11.
聚合物/层状硅酸盐(PLS)纳米复合材料是近10余年来迅速发展起来的的交叉学科.由于其具有常规复合材料所没有的结构、形态以及较常规聚合物基复合材料更优异的性能等而引起人们的广泛关注[1].以往文献主要报道PLS纳米复合材料的制备与性能表征,如尼龙-6/蒙脱土[2]、PET/蒙脱土[3]和硅橡胶/蒙脱土[4]等.对于熔融加工过程中粘土片层及高分子的取向和结构研究很少.Kojima等[5]发现并研究了尼龙-6/蒙脱土纳米复合材料中的熔融剪切诱导取向结构,其X射线衍射与透射电镜(TEM)结果均表明,粘土片层沿熔体流动方向平行取向,但片层间距不等,因此为一平行取向但无序的结构.对于PLS纳米复合材料中的剪切诱导有序结构尚未见报道.  相似文献   

12.
主要对乙烯-四氟乙烯共聚物(ETFE)、聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)、全氟磺酸树脂(PFSA)和全氟羧酸树脂(PFCR)这几种典型含氟树脂的加工流变行为和线性粘弹性进行了综述。FEP高速挤出时稳定流动区非常窄,并且进行模型拟合时发现其剪切流动行为符合Carreau模型。ETFE为热流变简单高分子,其剪切粘度、拉伸粘度、挤出胀大和动态模量等流变函数均可进行时温叠加。在低剪切速率下,PVDF熔体表现出牛顿流体行为;在高剪切速率下,PVDF熔体呈现出剪切稀化现象。PFSA和PFCR熔体的表观黏度随剪切速率、温度的升高而降低,流动曲线显示该熔体属于假塑性流体。  相似文献   

13.
采用耗散粒子动力学(Dissipative particle dynamics, DPD)方法研究了在剪切场作用下, 环形二嵌段共聚物微观相分离过程中的形态变化. 在层状(lamellae, LAM)体系中发生了微相的平行重取向和平行-垂直转变以及剪切导致的波动不稳定现象. 对于穿孔层状(Perforated lamellae, PL)体系, 强剪切导致了穿孔层状-柱状(Hexagonal cylinder, HEX)微相转变. 在剪切场作用下, 柱状体系中同样也有平行重取向发生. 可以用相区破坏-相区重生的两步机理描述微相的平行重取向、平行-垂直转变以及PL-HEX转变现象. 在球状相(Body centered cubic, BCC)体系中发现了剪切诱导相融合.  相似文献   

14.
聚丙烯熔体在剪切或应变应力作用下 ,分子链发生取向形成伸直链纤维晶 ,这些先取向形成的纤维晶成为其后结晶的晶核 .这种线形排列的特殊自晶核被称作排核 ( Row nuclei) [1] .排核诱导的结晶温度高于异相核和均相核 .折叠链片晶在排核上附生生长 ,形成具有柱状对称性的超分子结构 ,称为柱状晶 ( Cylindrite) [2 ,3] .聚合物的分子量 ,剪切温度和剪切速度等因素对柱状晶的生成有很大影响 [4 ,5] .本文选用不同级分的聚丙烯样品 ,利用高分子 (特别是取向结晶 )的记忆效应 [6,7] ,研究了剪切后薄膜试样在熔融重结晶过程中柱状晶的形成和发展…  相似文献   

15.
流动诱导聚合物结晶研究很少在压力场下开展,其原因是压力下流动诱导聚合物结晶对实验设备要求较高。然而,实际加工中不仅存在流动场,还有压力场。为此,作者课题组利用自制的装置对压力下流动诱导聚合物结晶开展了系统研究,发现其结晶行为与常压的流动诱导结晶有较大差别。等规聚丙烯(iPP)在压力和剪切场下可形成独特取向球形晶体形态。在短时间内(30min),iPP片晶可快速增厚,形成熔点接近平衡熔点的厚片晶(近180℃),其原因是在压力和流动场协同作用下,片晶增厚活化能快速减小。同时,从研究结果也获得了添加β成核剂的iPP体系在压力和流动场下形成β晶的窗口条件。对聚乳酸(PLA)的研究也发现了相似的片晶快速增厚规律。另外,在压力和流动场下,可直接从PLA熔体中获得可增韧PLA的β晶。研究成果为实际加工中的聚合物形态结构调控提供了理论和实验依据。  相似文献   

16.
iPP/HDPE/CB复合材料的制备及反常的温度-电阻效应   总被引:1,自引:0,他引:1  
本文利用普通熔融挤出法制备了iPP/HDPE/CB复合材料, 分别采用注射成型及压制成型方法得到测试试样. 通过研究复合材料体积电阻率随温度的变化, 考察注塑试样和压制试样的PTC特性及复合材料形态结构与试样PTC特性之间的关系.  相似文献   

17.
酞侧基聚芳醚砜和聚芳醚酮共混物的高温流变行为   总被引:7,自引:0,他引:7  
用锥板粘度计测试了酞侧基聚芳醚砜(PES-C)和酞侧基聚芳醚酮(PEK-C)及其共混物的熔体流变行为.试样的流动活化能分别为145、133和112KJ/mol.共混物的熔体粘度显著低于PES-C和PEK-C粘度的对数加和值.并证明试样的熔体流动性和加工稳定性都已达到注射成型工艺的要求.  相似文献   

18.
用示差扫描量热(DSC)、偏光显微镜(POM)及X射线衍射(XRD)分析考察了具有纳米结构的聚偏氟乙烯(PVDF)/1-乙烯基-3-丁基咪唑氯盐离子液体([VBIM][Cl])复合材料(PVDF/[VBIM][Cl])中经[VBIM][Cl]接枝的PVDF(PVDF-g-[VBIM][Cl])纳米微区对PVDF结晶行为的影响.研究结果表明,[VBIM][Cl]化学接枝在PVDF的分子链上,在PVDF/[VBIM][Cl]复合材料中,PVDF-g-[VBIM][Cl]嵌段形成大量纳米微区,分散在PVDF基体中.PVDF-g-[VBIM][Cl]纳米微区能够显著提高PVDF熔体结晶温度(Tc)并显著降低PVDF晶体的等温结晶时间.与纯PVDF相比,在纳米结构的PVDF/[VBIM][Cl]复合材料中,PVDF-g-[VBIM][Cl]纳米微区大大提高了PVDF晶体的成核速率,PVDF的球晶尺寸明显减小.由于[VBIM][Cl]完全"受限"于PVDF-g-[VBIM][Cl]纳米微区中,无法与PVDF分子链发生相互作用,因此纳米结构的PVDF/[VBIM][Cl]复合材料最终以非极性的α晶体为主.由于PVDF-g-[VBIM][Cl]纳米微区与PVDF基体具有热力学不相容性,因此其界面处的PVDF分子链处于部分有序的状态,有助于PVDF晶体的成核,加速了PVDF晶体的结晶速率.  相似文献   

19.
固定应变和最终应变速率,采用瞬时和缓慢2种电机加速方式对样品施加剪切,研究了流场加载模式对样品流变和结晶行为的影响.实验结果显示缓慢加速能够消除剪切过程中流场的非均匀性,使样品取向度增加,提高流场对聚合物熔体的作用效果.同时,流动诱导结晶对于加速时间有依赖性.对于速率为17.7 s-1的剪切,加速时间为1 s时,熔体流动均匀且流动诱导的晶体取向最强,短加速时间(0.5 s)和长加速时间(1.5 s)样品的流动诱导结晶效果都弱于加速时间为1 s的样品.但是,对于不同剪切速率,其对应的最优加速时间不同.对于流动诱导结晶来说,加速时间应当作为一个重要参数来考虑,其背后的真实物理含义还需要进一步研究来说明.  相似文献   

20.
以LDPE/EVA/纳米粘土复合体系为研究模型,考察了剪切作用下,分散良好的纳米粘土对聚合物基体熔体稳态及瞬态粘弹响应的影响.发现剪切作用下,纳米粘土增加了聚合物熔体粘弹特性对剪切速率、剪切应变及剪切作用史的依赖性,改变了相应的依赖关系.稳态剪切时,纳米粘土的加入使体系第一法向应力差(N1)在低剪切速率区变为负值,而在高剪切速率区N1与粘土的含量无关;同时就瞬态剪切应力及N1的应变依赖关系而言,复合体系明显不同于聚合物基体;预剪切对聚合物基体瞬态粘弹响应几乎没有影响,而当纳米粘土的加入量大于3wt%后,与未经预剪切的样品相比较,经预剪切的复合体系的瞬态剪切应力值、应力过冲程度以及稳态剪切应力值均明显下降,且预剪切前后复合体系达到稳态时其瞬态剪切应力差值随纳米粘土含量的增高而线性增加.此外,纳米粘土的添加对聚合物熔体受剪切作用的非线性粘弹响应存在影响.复合体系熔体呈现特异非线性粘弹响应,其缘由被认为是由于纳米粘土在聚合物基体中剥离分散,或聚合物分子链插层于粘土片层间,形成局部有序结构,受剪切作用而排列取向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号