首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the results of investigations into the thermal resistance W and thermal expansion coefficient β for single-crystal samples of Si, SiO2, Al2O3, and NaCl. The available experimental data on the thermal resistance and thermal expansion coefficient for materials with different types of interatomic bonding and different Landau criteria for convection are analyzed. It is demonstrated that the reduced phonon thermal resistance is equal to the isobaric thermal strain at any temperature.  相似文献   

2.
Experimental data on the thermal conductivity K(T) of crystals of natural and highly enriched germanium (99.99%) 70Ge with lapped and polished surfaces are analyzed in the temperature range ∼1.5–8 K. In all the samples in the temperature range ∼1.5–4 K the standard boundary mechanism of scattering dominates. As the temperature is raised, an isotopic scattering mechanism is observed in the natural samples. In the highly enriched samples the theoretical values of K(T) turn out to be much smaller than the experimental ones. It is conjectured that a Poiseuille viscous flow regime of the phonon gas emerges in this case. Zh. éksp. Teor. Fiz. 114, 1757–1764 (November 1998)  相似文献   

3.
The thermal conductivity of chemically, structurally, and isotopically highly pure germanium single crystals is investigated experimentally in the temperature range from 2 to 300 K. It is found that the thermal conductivity of germanium enriched to 99.99% 70Ge is 8 times higher at the maximum than the thermal conductivity of germanium with the natural isotopic composition. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 6, 463–467 (25 March 1996)  相似文献   

4.
The thermal conductivity of LaAl2 and of two dilute (La, Ce)Al2 alloys was measured in the normal state between 0.4 and 8 K. From the lattice conductivity of LaAl2 a high dislocation densityN d caused by the arc melting process can be inferred. After annealingN d is reduced by an order of magnitude. For the (La, Ce)Al2 samples minima are observed at 5 K in theW e ·T vs.T curves (W e =electronic thermal resistivity). Below 1 K the quantityW e ·T is linear in (— lnT). The electronic Lorenz ratioL e (T)=ρ(T)/W e (T) ·T shows a maximum at 2 K with a value 23% aboveL e (0). It is for the first time that this Kondo anomaly is established in its full temperature dependence.  相似文献   

5.
Based on the observablesM W, Γ l ,s W ?2 (M Z 2 ), we evaluate the parameters Δx, Δy and ε at one-loop level within an electroweak massive vector-boson theory, which does not employ the Higgs mechanism. The theoretical results are consistent with the experimental ones on Δx, Δy, ε. The theoretical prediction for Δy coincides with the standard-model one (apart from numerically irrelevant terms which vanish forM H→∞). Nonrenormalizability only affects Δx and ε, which differ from the standard-model results by the replacement logM H→log Λ for a heavy Higgs mass,M H (where Λ denotes an effective UV cut-off).  相似文献   

6.
The thermal conductivity k(T) and the specific heat of amorphous and partially crystalline polyethylene terephthalate) were measured in the intervals 1.2–40K and 1.2–10K, respectively. For a quantitative study of the relation between the thermal conductivity and the structure and degree of crystallinity of the samples their small angle X-ray scattering was measured. For T > 20 K, k(T) increases with increasing degree of crystallinity φ, whereas for T < 10 K, k(T) decreases when φ increases. Amorphous PET shows a temperature dependence of k(T) which is typical for all amorphous materials. These results are compared with curves which were computed from experimental small angle structure functions using a model for phonon scattering in vitreous systems obtained by Klemens. It is shown that for T < 10 K the change in conductivity in the partially crystalline samples relative to that of the purely amorphous sample can quantitatively be explained by additional scattering of phonons from static long-range order fluctuations of the sound velocity which are due to the microscopic structure of the polymer. From a measurement of the optical extinction of the samples relative values of their thermal conductivity at 50 mK are estimated. The specific heat obeys a T3-law between 1.2 K and about 7 K and decreases linearly with φ. The Debye specific heat of the amorphous sample was computed from the sound velocities. It is only 85% of the measured value.  相似文献   

7.
M Goyal 《Pramana》2018,91(6):87
A phenomological model is described here to study the effect of size, shape and phonon scattering on the thermal conductivity of nanostructures. Using the classical model proposed by Guisbiers et al (Phys. Chem. Chem. Phys. 12, 7203 (2010), J. Phys. Chem. C 112, 4097 (2008)) in terms of the melting temperature of nanostructures, the expression for variation of thermal conductivity is obtained in terms of shape and size parameter. An additional term is included in the expression of thermal conductivity to consider the impact of phonon scattering due to the surface roughness with a decrease in size. The expression of thermal conductivity is obtained for spherical nanosolids, nanowires and nanofilms. The thermal conductivity is found to decrease in nanostructures in comparison with the counterpart bulk material. The values of thermal conductivity obtained from the present model are found to be close to the available experimental data for different values of roughness parameter which verifies the suitability of the model.  相似文献   

8.
The photoinduced semiconductor-metal phase transition occurring for a time Δt < 1 ps in the surface layer of vanadium dioxide is studied theoretically. A nonthermal mechanism of instability development is considered. An equation for the order parameter ξ of the photoinduced semiconductor-metal phase transition is derived. It is shown that the transition of the surface layer of VO2 to the metallic state requires irradiation by a laser pulse whose energy density W exceeds a critical value W c. The phase transition is initiated at the surface, after which the interface propagates deep into the sample. The critical energy density W c, the velocity of propagation of the metal-semiconductor interface, the thickness z 0, and the characteristic time Δt of formation of the metal layer are calculated. The theoretical results obtained are in agreement with the experimental data on irradiation of vanadium dioxide single crystals by high-intensity laser pulses.  相似文献   

9.
This paper discusses the question of how isotopic disorder affects the position of the thermal-conductivity maximum of germanium. The discussion is in terms of a Callaway-type model. Experimental data on the thermal conductivity of a natural Ge crystal and of highly enriched Ge70 crystals are analyzed. Fiz. Tverd. Tela (St. Petersburg) 41, 1185–1189 (July 1999)  相似文献   

10.
A method has been proposed for approximating a phonon spectrum of cubic crystals, which has been obtained from data on inelastic neutron scattering for symmetric directions, over the entire Brillouin zone in the form appropriate for studying relaxation characteristics of phonon systems. The effect of dispersion and damping of thermal phonon states on the longitudinal ultrasonic absorption in anharmonic processes of scattering with the participation of three longitudinal phonons has been investigated for germanium crystals. It has been shown that the inclusion of the dispersion leads to a decrease in the anisotropy of ultrasonic absorption in the LLL relaxation mechanism and makes it possible to fit the results obtained from calculations of the ultrasonic absorption coefficients to the experimental data in the low-temperature range. The temperature dependence and anisotropy of the relaxation rate of longitudinal thermal phonons in germanium crystals have been determined from experimental data on ultrasonic absorption. The performed analysis has refined values of the relaxation parameters obtained from the interpretation of the data on thermal conductivity of germanium crystals with different isotopic compositions in the isotropic-medium model.  相似文献   

11.
Careful experimental investigations into the behavior of the thermal resistance of single-crystal silicon are carried out in the immediate vicinity of the temperature of an anharmonicity sign inversion (T i =121.1 K), where phonon thermal resistance approaches zero. An anomalous positive deviation of the total thermal resistance (W) from the linear part of the temperature dependence with a maximum at 121.1 K is found in the temperature range 105–130 K. The temperature behavior of W in this range indicates that the mean free path of phonons is limited by a characteristic size of structural defects and that its temperature dependence exhibits specific features in the vicinity of T i . It is established that the character of the temperature dependence of W above and below T i is different. A linear functional relation between the total thermal resistance and the isobaric thermal strain is revealed at positive and negative anharmonicities of atomic vibrations.  相似文献   

12.
In order to study the influence of grain size and lattice strain on the thermal conductivity of nanocrystalline (NC) materials, both experimental and theoretical studies were carried out on NC copper. The NC copper samples were prepared by hot isostatic pressing of nano-sized powder particles with mean grain size of 30 nm. The thermal behaviors of the samples were measured to be 175.63–233.37 W (m K)?1 by using a laser method at 300 K, which is 45.6 and 60.6 % of the coarse-grained copper, respectively. The average grain size lies in the range of 56–187 nm, and the lattice strain is in the range of ?0.21 to ?0.45 % (in the direction of 111) and ?0.09 to 0.92 % (in the direction of 200). In addition, a modified Kapitza resistance model was developed to study the thermal transport in NC copper. The theoretical calculations based on the presented theoretical model were in good agreement with our experimental results, and it demonstrated that the thermal conductivity of NC materials show obvious size effect. It is also evident that the decrease in the thermal conductivity of NC material can be mainly attributed to the nano-size effect rather than the lattice strain effect.  相似文献   

13.
From a combined analysis of the stoichiometric composition and Urbach tail in samples of CuInSe2, CuInTe2, and CuGaTe2 of the I-III-VI2 family of chalcopyrite semiconductors, it is found that the energy p involved in the electron/exciton-phonon interaction is a linear function of a parameter Δz which is the sum of the deviations from ideal molecularity Δx and anion to cation ratio Δy. It gives evidence that in the copper ternaries p is associated to the structural defects caused by cation-cation, cation-anion, and other intrinsic disorders. The high value of p found in the studied samples, higher than the highest optical mode, is shown to come from the contribution of the additional phonon energy due to structural defects. This is in agreement with recently proposed models of the temperature dependence of the Urbach energy.  相似文献   

14.
H.L. Fu  L. Gao 《Physics letters. A》2011,375(41):3588-3592
Effective thermal conductivity tensor for magnetic nanofluids containing magnetizable nanoparticles suspended in a base liquid is theoretically investigated with a two-step homogenization method. First, we adopt differential effective medium theory to determine the equivalent thermal conductivity of magnetizable nanoparticle chains. Second, we generalize self-consistent anisotropic effective medium theory to study the effective thermal conductivity tensors of magnetic nanofluids. Numerical results show that the aspect ratio of chain-like aggregated clusters plays an important role in enhancement of anisotropic thermal conductivity. In addition, our theoretical results on the elements of thermal conductivity parallel to the fields Kez and perpendicular to the fields Kex are in good agreement with experimental data. Furthermore, we predict the nonmonotonic dependence of effective thermal conductivity on magnetic field strength, in accordance with experimental reports.  相似文献   

15.
Memory switching of germanium tellurium amorphous semiconductor   总被引:1,自引:0,他引:1  
The dc conductivity and switching properties of amorphous GeTe thin film of thickness 262 nm are investigated in the temperature range 303-373 K. The activation energy ΔEσ, the room temperature electrical conductivity σRT and the pre-exponential factor σ0 were measured and validated for the tested sample. The conduction activation energy ΔEσ is calculated. The I-V characteristic curves of the thin film samples showing a memory switching at the turnover point (TOP) from high resistance state (OFF state) to the negative differential resistance state (NDRS) (ON state). It is found that the mean values of the threshold electrical field Eth decreased exponentially with increasing temperatures in the investigated range. The switching activation energy ΔEth is calculated. Measurements of the dissipated threshold power Pth and the threshold resistance Rth were carried out at TOP point at different temperatures of the samples. The activation energies ΔER and ΔEP caused by resistance and power respectively are deduced. The results obtained support thermal model for initiating switching process in this system.  相似文献   

16.
The thermal diffusivities of gold and silver have been measured under pressure up to 2.5 GPa at room temperature. From the measured data the pressure dependence of the thermal conductivity, λ, has been calculated. The values found for the pressure coefficient λ?1δλδP were 3.9 × 10?2GPa?1 for gold and 4.0 × 10?2 GP silver at atmospheric pressure. The results are compared to theoretical predictions of the pressure dependence and also to previous experimental results for copper and aluminium. For the noble metals, small angle or “vertical” scattering of electrons is shown to have a stronger volume dependence than “horizontal” scattering.  相似文献   

17.
We have studied the influence of isotopic disorder on the local deformations in Ge single crystals from both experimental and calculation points of view. The nuclear magnetic resonance (NMR) spectra of73Ge nuclei (the nuclear spin equals 9/2) in perfect single crystals of germanium with different isotopic content were measured at temperatures 80, 300 and 450 K. Abnormal broadening of the spectrum was found to occur when the magnetic field was aligned along the [111] axis of a crystal. The observed specific angular dependence of the quadrupole broadening was attributed to isotopic disorder among atoms of germanium sited around the73Ge NMR probe. Local lattice deformations in germanium crystal lattice due to isotopic impurity atoms were calculated in the framework of the adiabatic bond charge model. The results obtained were applied to study random noncubic crystal field interactions with the nuclear quadrupole moments and corresponding effects in NMR spectra. Simulated second and fourth moments of resonance frequency distributions caused by the magnetic dipole-dipole and electric quadrupole interactions are used to analyze the lineshapes, theoretical predictions agree qualitatively with the experimental data.  相似文献   

18.
The Raman and IR absorption spectra of single crystals of germanium isotopes 72Ge, 73Ge, 74Ge, and 76Ge in the region of phonon absorption and interband electronic transitions are studied at room temperature. The dependence of the Raman peak position on the atomic mass has the form ν ~ M–1/2. The shifts of the phonon absorption peaks of individual isotopes with respect to germanium of natural isotopic composition natGe are determined. With increasing average atomic mass of germanium, these peaks shift to longer wavelengths. In the region of interband electronic transitions, the intrinsic absorption edge of 76Ge is observed to shift by 1 meV to higher energies with respect to Ge of natural isotopic composition. For isotopes with atomic masses close to that of natural germanium (72Ge,73Ge, 74Ge), we found no significant difference in the band gap width at room temperature.  相似文献   

19.
The thermal conductivity κ (within the range 4–300 K) and electrical conductivity σ (from 80 to 300 K) of polycrystalline Sm3S4 with the lattice parameter a=8.505 Å (with a slight off-stoichiometry toward Sm2S3) are measured. For T>95 K, charge transfer is shown to occur, as in stoichiometric Sm3S4 samples, by the hopping mechanism (σ ~ exp(?ΔE/kT) with ΔE ~ 0.13 eV). At low temperatures [up to the maximum in the lattice thermal conductivity κph(T)], κphT 2.6; in the range 20–50 K, κphT ?1.2; and for T>95 K, where the hopping charge-transfer mechanism sets in, κphT ?0.3 and a noticeable residual thermal resistivity is observed. It is concluded that in compounds with inhomogeneous intermediate rare-earthion valence, to which Sm3S4 belongs, electron hopping from Sm2+ (ion with a larger radius) to Sm3+ (ion with a smaller radius) and back generates local stresses in the crystal lattice which bring about a change in the thermal conductivity scaling of κph from T ?1.2 to T ?0.3 and the formation of an appreciable residual thermal resistivity.  相似文献   

20.
A comprehensive experimental and theoretical study of magnetic, magnetoelectric, thermal, and spectroscopic characteristics of HoGa3(BO3)4 gallium borate single crystals has been performed. A large magnetoelectric effect exceeding its values found in all iron and aluminum borates except HoAl3(BO3)4 has been observed. The magnetoelectric polarization of HoGa3(BO3)4 equals ΔP ba (B a ) ≈ ?1020 μC/m2 at T = 5 K in a magnetic field of 9 T. The theoretical treatment based on the crystal field model for rare-earth ions provides a unified approach for the consistent interpretation of all measured characteristics. The crystal-field parameters are determined. The temperature (in the 3–300 K range) and magnetic field (up to 9 T) dependences of the magnetization, the Schottky anomaly in the temperature dependence of the specific heat, and its shift in the field B ‖ c are described. To compare the thermal properties of HoGa3(BO3)4 with those of HoAl3(BO3)4 exhibiting record values of the polarization, the specific heat of HoAl3(BO3)4 at various B values and the temperature dependence of the polarization ΔP b (T) in the applied magnetic field of 9 T have been measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号