首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

2.
Let $\mathcal{A}$ and $\mathcal{B}$ be unital rings, and $\mathcal{M}$ be an $\left( {\mathcal{A},\mathcal{B}} \right)$ -bimodule, which is faithful as a left $\mathcal{A}$ -module and also as a right $\mathcal{B}$ -module. Let $\mathcal{U} = Tri\left( {\mathcal{A},\mathcal{M},\mathcal{B}} \right)$ be the triangular algebra. In this paper, we give some different characterizations of Lie higher derivations on $\mathcal{U}$ .  相似文献   

3.
Let ${\mathcal{M}}$ be a finite von Neumann algebra equipped with a normal tracial state τ. It is shown that if ${\{x_n\}_{n\geq1}}$ is a sequence of positive marginales that is bounded in ${L^1(\mathcal{M},\mathcal{T})}$ , then for every 0 < p < 1, there exists ${y \in L^p(\mathcal{M},\mathcal{T})}$ satisfying the property that ${x_n \leq y}$ for all ${n\geq 1}$ . Thus we obtain a noncommutative analogue of a maximal function theorem from classical martingale theory.  相似文献   

4.
5.
Let N be a maximal and discrete nest on a separable Hilbert space H,E the projection from H onto the subspace[C]spanned by a particular separating vector for N′and Q the projection from K=H⊕H onto the closed subspace{(,):∈H}.Let L be the closed lattice in the strong operator topology generated by the projections(E 00 0),{(E 00 0):E∈N}and Q.We show that L is a Kadison-Singer lattice with trivial commutant,i.e.,L′=CI.Furthermore,we similarly construct some Kadison-Singer lattices in the matrix algebras M2n(C)and M2n.1(C).  相似文献   

6.
We prove that for each universal algebra ${(A, \mathcal{A})}$ of cardinality ${|A| \geq 2}$ and infinite set X of cardinality ${|X| \geq | \mathcal{A}|}$ , the X-th power ${(A^{X}, \mathcal{A}^{X})}$ of the algebra ${(A, \mathcal{A})}$ contains a free subset ${\mathcal{F} \subset A^{X}}$ of cardinality ${|\mathcal{F}| = 2^{|X|}}$ . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family ${\mathcal{I} \subset \mathcal{P}(X)}$ of cardinality ${|\mathcal{I}| = |\mathcal{P}(X)|}$ in the Boolean algebra ${\mathcal{P}(X)}$ of subsets of an infinite set X.  相似文献   

7.
Let $\{\varphi _n(z)\}_{n\ge 0}$ be a sequence of inner functions satisfying that $\zeta _n(z):=\varphi _n(z)/\varphi _{n+1}(z)\in H^\infty (z)$ for every $n\ge 0$ and $\{\varphi _n(z)\}_{n\ge 0}$ has no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace $\mathcal{M }$ of $H^2(\mathbb{D }^2)$ . The ranks of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }_z$ and $\mathcal{F }^*_z$ respectively are determined, where $\mathcal{F }_z$ is the fringe operator on $\mathcal{M }\ominus w\mathcal{M }$ . Let $\mathcal{N }= H^2(\mathbb{D }^2)\ominus \mathcal{M }$ . It is also proved that the rank of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }^*_z$ equals to the rank of $\mathcal{N }$ for $T^*_z$ and $T^*_w$ .  相似文献   

8.
The moduli space of smooth curves admits a beautiful compactification $\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}$ by the moduli space of stable curves. In this paper, we undertake a systematic classification of alternate modular compactifications of $\mathcal{M}_{g,n}$ . Let $\mathcal{U}_{g,n}$ be the (non-separated) moduli stack of all n-pointed reduced, connected, complete, one-dimensional schemes of arithmetic genus g. When g=0, $\mathcal{U}_{0,n}$ is irreducible and we classify all open proper substacks of $\mathcal{U}_{0,n}$ . When g≥1, $\mathcal{U}_{g,n}$ may not be irreducible, but there is a unique irreducible component $\mathcal{V}_{g,n} \subset\mathcal{U}_{g,n}$ containing $\mathcal{M}_{g,n}$ . We classify open proper substacks of $\mathcal {V}_{g,n}$ satisfying a certain stability condition.  相似文献   

9.
For a symmetric monoidal-closed category $\mathcal{X}$ and any object K, the category of K-Chu spaces is small-topological over $\mathcal{X}$ and small cotopological over $\mathcal{X}^{{{\text{op}}}}$ . Its full subcategory of $\mathcal{M}$ -extensive K-Chu spaces is topological over $\mathcal{X}$ when $\mathcal{X}$ is $\mathcal{M}$ -complete, for any morphism class $\mathcal{M}$ . Often this subcategory may be presented as a full coreflective subcategory of Diers’ category of affine K-spaces. Hence, in addition to their roots in the theory of pairs of topological vector spaces (Barr) and their connections with linear logic (Seely), the Dialectica categories (Hyland, de Paiva), and with the study of event structures for modeling concurrent processes (Pratt), Chu spaces seem to have a less explored link with algebraic geometry. We use the Zariski closure operator to describe the objects of the *-autonomous category of $\mathcal{M}$ -extensive and $\mathcal{M}$ -coextensive K-Chu spaces in terms of Zariski separation and to identify its important subcategory of complete objects.  相似文献   

10.
The bcβγ-system $ \mathcal{W} $ of rank 3 has an action of the affine vertex algebra $ {V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ , and the commutant vertex algebra $ \mathcal{C}=\mathrm{Com}\left( {{V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right),\mathcal{W}} \right) $ contains copies of V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and Odake’s algebra $ \mathcal{O} $ . Odake’s algebra is an extension of the N = 2 super-conformal algebra with c = 9, and is generated by eight fields which close nonlinearly under operator product expansions. Our main result is that V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and $ \mathcal{O} $ form a Howe pair (i.e., a pair of mutual commutants) inside $ \mathcal{C} $ . More generally, any finite-dimensional representation of a Lie algebra $ \mathfrak{g} $ gives rise to a similar Howe pair, and this example corresponds to the adjoint representation of $ \mathfrak{s}{{\mathfrak{l}}_2} $ .  相似文献   

11.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

12.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

13.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

14.
In the given article, enveloping C*-algebras of AJW-algebras are considered. Conditions are given, when the enveloping C*-algebra of an AJW-algebra is an AW*-algebra, and corresponding theorems are proved. In particular, we proved that if $\mathcal{A}$ is a real AW*-algebra, $\mathcal{A}_{sa}$ is the JC-algebra of all self-adjoint elements of $\mathcal{A}$ , $\mathcal{A}+i\mathcal{A}$ is an AW*-algebra and $\mathcal{A}\cap i\mathcal{A} = \{0\}$ then the enveloping C*-algebra $C^*(\mathcal{A}_{sa})$ of the JC-algebra $\mathcal{A}_{sa}$ is an AW*-algebra. Moreover, if $\mathcal{A}+i\mathcal{A}$ does not have nonzero direct summands of type I2, then $C^*(\mathcal{A}_{sa})$ coincides with the algebra $\mathcal{A}+i\mathcal{A}$ , i.e. $C^*(\mathcal{A}_{sa})= \mathcal{A}+i\mathcal{A}$ .  相似文献   

15.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

16.
It is conjectured that the set ${\mathcal {G}}$ of the primitive roots modulo p has no decomposition (modulo p) of the form ${\mathcal {G}= \mathcal {A} +\mathcal {B}}$ with ${|\mathcal {A}|\ge 2}$ , ${|\mathcal {B} |\ge 2}$ . This conjecture seems to be beyond reach but it is shown that if such a decomposition of ${\mathcal {G}}$ exists at all, then ${|\mathcal {A} |}$ , ${|\mathcal {B} |}$ must be around p 1/2, and then this result is applied to show that ${\mathcal {G}}$ has no decomposition of the form ${\mathcal {G} =\mathcal {A} + \mathcal {B} + \mathcal {C}}$ with ${|\mathcal {A} |\ge 2}$ , ${|\mathcal {B} |\ge 2}$ , ${|\mathcal {C} |\ge 2}$ .  相似文献   

17.
Every multiplier algebra of an irreducible complete Pick kernel arises as the restriction algebra ${\mathcal{M}_V = \{f \big|_V : f \in \mathcal{M}_d\}}$ , where d is some integer or ${\infty, \mathcal{M}_d}$ is the multiplier algebra of the Drury-Arveson space ${H^2_d}$ , and V is a subvariety of the unit ball. For finite dimensional d it is known that, under mild assumptions, every isomorphism between two such algebras ${\mathcal{M}_V}$ and ${\mathcal{M}_W}$ is induced by a biholomorphism between W and V. In this paper we consider the converse, and obtain positive results in two directions. The first deals with the case where V is the proper image of a finite Riemann surface. The second deals with the case where V is a disjoint union of varieties.  相似文献   

18.
The present paper proposes a general theory for $\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) $ -complete partially ordered sets (alias $\mathcal{Z} _{1}$ -join complete and $\mathcal{Z}_{2}$ -meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections $\mathcal{Z}_{i}$ (i?=?1,...,4) and $\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) $ , the category $\mathcal{Q}$ P of $\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) $ -complete partially ordered sets and $\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) $ -continuous (alias $\mathcal{ Z}_{3}$ -join preserving and $\mathcal{Z}_{4}$ -meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category $\mathcal{Q}$ S of $\mathcal{Q}$ -spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory $ \mathcal{Q}$ P s of $\mathcal{Q}$ P of all $\mathcal{Q}$ -spatial objects and the full subcategory $\mathcal{Q}$ S s of $\mathcal{Q}$ S of all $\mathcal{Q}$ -sober objects. Here $\mathcal{Q}$ -spatiality and $\mathcal{Q}$ -sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to $\mathcal{Z}$ -compact generation and $\mathcal{Z}$ -sobriety have also been pointed out in this paper.  相似文献   

19.
20.
Denote by ${\mathcal{C}\ell_{p,q}}$ the Clifford algebra on the real vector space ${\mathbb{R}^{p,q}}$ . This paper gives a unified tensor product expression of ${\mathcal{C}\ell_{p,q}}$ by using the center of ${\mathcal{C}\ell_{p,q}}$ . The main result states that for nonnegative integers p, q, ${\mathcal{C}\ell_{p,q} \simeq \otimes^{\kappa-\delta}\mathcal{C}_{1,1} \otimes Cen(\mathcal{C}\ell_{p,q}) \otimes^{\delta} \mathcal{C}\ell_{0,2},}$ where ${p + q \equiv \varepsilon}$ mod 2, ${\kappa = ((p + q) - \varepsilon)/2, p - |q - \varepsilon| \equiv i}$ mod 8 and ${\delta = \lfloor i / 4 \rfloor}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号