首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g(lum), recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.  相似文献   

2.
The optical activity associated with the f-f; emission bands of Tb(III) complexes which contain chiral hydroxycarboxylic acids has been studied by means of circularly polarized luminescence (CPL) spectroscopy. Complexes having the general formula Tb(SSA)2(L) were studied (where SSA signifies 5-sulphosalicylic acid), with the chiral ligand (L) being L-lactic acid, L-mandelic acid, L-aspartic acid, and L-malic acid. The CPL spectra were found to be sensitive to the mode of bonding between the metal and the chiral ligand and therefore allowed predictions to be made regarding how the hydroxycarboxylic acid ligands attach to the Tb(III) ion. Also, the degree of optical activity varied systematically with the concentration of chiral ligand, and we have used this dependence to calculate formation constants for the addition of a hydroxycarboxylic acid ligand to the Tb/SSA complex. Finally, the line shape and magnitudes of the CPL spectra provide information regarding the type of chirality experienced by the Tb(III) ion.  相似文献   

3.
A judicious change in the selected transition used for circular polarization excitation will overcome the low oscillator strength limitation of the currently allowed magnetic-dipole (5)D1 <-- (7)F2 (Eu(III)) transition chosen for circularly polarized luminescence (CPL) measurement. The proposed allowed magnetic-dipole (5)D1 <-- (7)F0 (Eu(III)) transition will facilitate the detection of CPL from the Eu(III) systems of interest. CPL on the acetonitrile solution of the chiral tris complex of Eu(III) with (R,R)-N,N'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide ([Eu((R,R)-1)3](3+)), recently suggested as an effective and reliable CPL calibrating agent, confirms the feasibility of the proposed experimental procedure. A comparable CPL activity exhibited by the acetonitrile solution of [Eu((R,R)-1)3](3+) following direct excitation in the spectral range of the (5)D1 <-- (7)F0 transition and upon indirect excitation through the ligand absorption bands (lambda(exc) = 308 nm) was observed. This confirms that the recommended magnetic-dipole allowed absorption transition, (5)D1 <-- (7)F0, is the transition to be considered in the measurement of CPL. This work provides critical direction for the continued instrumental improvements that can be done for developing CPL into a biomolecular structural probe.  相似文献   

4.
The luminescence and circularly polarized luminescence (CPL) spectra of M(I)[Eu((+)-hfbc)(4)] show a similar behavior to the exciton CD in the intraligand π-π* transitions when the alkali metal ions and solvents are manipulated. There is a difference in susceptibility in solvation toward the alkali metal ions but not toward the Eu(III) ion, as in the case of axially symmetric DOTA-type compounds. The remarkable CPL in the 4f-4f transitions provide much more information on the stereospecific formation of chiral Eu(III) complexes, since CPL spectroscopy is limited to luminescent species and reflects selectively toward helicity of the local structural environment around the lanthanide(III). While in comparison, exciton CD reveals the chiral structural information from the helical arrangement of the four bladed chelates. Of special importance, the observation of the highest CPL activities measured to date for lanthanide(III)-containing compounds (i.e., Eu and Sm) in solution supports the theory that the chirality of lanthanide(III) in the excited state corresponds to that in the ground state, which was derived from the exciton CD.  相似文献   

5.
The synthesis of chiral C1‐symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10?3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL‐emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

6.
Highly luminescent tris[β-diketonate (HFA, 1,1,1,5,5,5-hexafluoropentane-2,4-dione)] europium(III) complexes containing a chiral bis(oxazolinyl) pyridine (pybox) ligand--[(Eu(III)(R)-Ph-pybox)(HFA)(3)], [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)], and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)])--exhibit strong circularly polarized luminescence (CPL) at the magnetic-dipole ((5)D(0) → (7)F(1)) transition, where the [(Eu(III)(R)-Ph-pybox)(HFA)(3)] complexes show virtually opposite CPL spectra as compared to those with the same chirality of [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)]. Similarly, the [(Tb(III)(R)-Ph-pybox)(HFA)(3)] complexes were found to exhibit CPL signals almost opposite to those of [(Tb(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Tb(III)(R)-Me-Ph-pybox)(HFA)(3)] complexes with the same pybox chirality. Single-crystal X-ray structural analysis revealed ligand-ligand interactions between the pybox ligand and the HFA ligand in each lanthanide(III) complex: π-π stacking interactions in the Eu(III) and Tb(III) complexes with the Ph-pybox ligand, CH/F interactions in those with the i-Pr-pybox ligand, and CH/π interactions in those with the Me-Ph-pybox ligand. The ligand-ligand interactions between the achiral HFA ligands and the chiral pybox results in an asymmetric arrangement of three HFA ligands around the metal center. The metal center geometry varies depending on the types of ligand-ligand interaction.  相似文献   

7.
The pinene-bipyridine carboxylic derivatives (+)- and (-)-HL, designed to form configurationally stable lanthanide complexes, proved their effectiveness as chiral building blocks for the synthesis of lanthanide-containing superstructures. Indeed a self-assembly process takes place with complete diastereoselectivity between the enantiomerically pure ligand L(-) and Ln(III) ions (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er), thus leading to the quantitative formation of a trinuclear supramolecular architecture with the general formula [Ln(3)(L)(6)(mu(3)-OH)(H(2)O)(3)](ClO(4))(2) (abbreviated as tris(Ln[L](2))). This class of C(3)-symmetrical compounds was structurally characterized in the solid state and solution. Electrospray (ES) mass spectrometric and (1)H NMR spectroscopic analyses indicated that the trinuclear species are maintained in solution (CH(2)Cl(2)) and are stable in the investigated concentration range (10(-2)-10(-6) m). The photophysical properties of the ligand HL and its tris(Ln[L](2)) complexes were studied at room temperature and 77 K, thus demonstrating that the metal-centered luminescence is well sensitized both for the visible and near-IR emitters. The chiroptical properties of tris(Ln[L](2)) complexes were investigated by means of circular dichroism (CD) and circularly polarized luminescence (CPL). A high CD activity is displayed in the region of pi-pi* transitions of bipyridine. CPL spectra of tris(Eu[(+)-L](2)) and tris(Tb[(+)-L](2)) present large dissymmetry factors g(em) for the sensitive transitions of Eu(III) ((5)D(0)-->(7)F(1), g(em)=-0.088) and Tb(III) ((5)D(4)-->(7)F(5), g(em)=-0.0806). The self-recognition capabilities of the system were tested in the presence of artificial enantiomeric mixtures of the ligand. (1)H NMR spectra identical to those of the enantiomerically pure complexes and investigations by CD spectroscopic analysis reveal an almost complete chiral self-recognition in the self-assembly process, thus leading to mixtures of homochiral trinuclear structures.  相似文献   

8.
The synthesis of chiral C1-symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10−3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL-emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

9.
The template condensation of (R)-2,2′-diamino-1,1′-binaphthyl and 2,6-diformylpyridine in the presence of lanthanide(III) nitrates was used to obtain new Pr(III), Nd(III), Sm(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III) and Yb(III) complexes of the chiral hexaaza Schiff base macrocycle L. The complexes have been characterised on the basis of ESI MS spectrometry, NMR spectroscopy and elemental analyses. The X-ray crystal structure of Eu(III) complex reveals highly twisted helical conformation of the macrocycle L. The 10-coordinate Eu(III) ion is coordinated by all six nitrogen atoms of the macrocycle and two additional bidentate nitrate anions. Emission and excitation spectra as well as luminescence decay time measurements (at 295 and 77 K) were used to characterize the photophysical properties of the Eu(III), Gd(III) and Yb(III) complexes in the solid-state. Energy transfer from ligand to the Eu(III) and Yb(III) ions has been demonstrated and thermally activated back energy transfer processes have been analyzed.  相似文献   

10.
Six complexes of rare earth nitrates (Ln=La, Sm, Eu, Gd, Tb, Dy) with a new amide type ligand, N-(naphthalen-2-yl)-N-phenyl-2-(quinolin-8-yloxy)acetamide (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR and and 1H NMR spectra. Under excitation, Eu(III) and Sm(III) complexes exhibited strong red emissions. And the luminescence intensity of Sm(III) complex is higher than that of Eu(III) complex. Thus the Eu(III) and Sm(III) complexes are the potential light conversion agent. However, the Tb(III) and Dy(III) complexes cannot exhibit characteristic emissions of terbium and dysprosium ions, respectively. The results of phosphorescence spectrum show that the triplet-state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion. In addition, the luminescence of the Eu(III) complex is also relatively strong in highly diluted tetrahydrofuran solution (2 x 10(-4)mol/L) compared with the powder. This is not only due to the solvate effects but also to the changes of the structure of the Eu(III) complex after being dissolved into the solvents. Furthermore, owing to the co-luminescence effect, the proper La(III) or Gd(III) doped Eu(III) complexes show stronger luminescence than the pure Eu(III) complex.  相似文献   

11.
Optical activity has been induced in the title complexes through outer-sphere complexation with L-tartaric acid, and with several carboxyl and hydroxyl esters. The optical activity was studied in the Tb(III) and Eu(III) complexes by means of circularly polarized luminescence (CPL) spectroscopy, and the symmetry changes associated with the adduct formation were followed by examining the hypersensitive absorption of the Ho(III) complexes. Optical activity was found to be induced by each substrate, although the nature of the outer-sphere interaction was necessarily different in the various systems. It was found in every case that the presence of a (R,R)-tartrate substrate led to enrichment of the A-isomer of the lanthanide complexes.  相似文献   

12.
A series of newly synthesized dicyanoplatinum(II) 2,2′‐bipyridine complexes exhibits self‐assembly properties in solution after the incorporation of the l ‐valine amino units appended with various hydrophobic motifs. These l ‐valine‐derived substituents were found to have critical control over the aggregation behaviors of the complexes in the solution state. On one hand, one of the complexes was found to exhibit interesting circularly polarized luminescence (CPL) signals at low temperature due to the formation of chiral spherical aggregates in the temperature‐dependent studies. On the other hand, systematic transformation from less uniform aggregates to well‐defined fibrous and rod‐like structures via Pt???Pt and π–π stacking interactions has also been observed in the mixed‐solvent studies. These changes were monitored by UV/Vis absorption, emission, circular dichroism (CD), and CPL spectroscopies, and morphologies were studied by electron microscopy.  相似文献   

13.
Achieving a large dissymmetry factor (glum) is a challenge in the field of circularly polarized luminescence (CPL). A chiral charge‐transfer (CT) system consisting of chiral electron donor and achiral electron acceptor shows bright circularly polarized emission with large glum value. The chiral emissive CT complexes could be fabricated through various approaches, such as grinding, crystallization, spin coating, and gelatinization, by simply blending chiral donor and achiral acceptor. The structural synergy originating from π–π stacking and strong CT interactions resulted in the long‐range ordered self‐assembly, enabling the formation of supramolecular gels. Benefiting from the large magnetic dipole transition moment in the CT state, the CPL activity of CT complexes exhibited large circular polarization. Our design strategy of the chiral emissive CT complexes is expected to help the development of new molecular engineering strategies for designing highly efficient CPL‐active materials.  相似文献   

14.
Anion‐responsive π‐conjugated compounds having chiral alkyl chains were synthesized. Circular dichroism (CD) and circularly polarized luminescence (CPL) were observed in the solution‐state assemblies of the chiral anion receptors and those of their anion complexes as salts of a planar triazatriangulenium cation. The CD and CPL spectral patterns of the ion‐pair‐based assemblies were completely opposite to those of the anion‐free assemblies, and this suggests that anion binding and subsequent ion pairing change the chirality of the assembly modes.  相似文献   

15.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

16.
The design and synthesis of dinuclear-lanthanide complexes possessing triazole-based bridges, formed by using copper catalysed 1,3-cycloaddition reactions between heptadentate alkyne functionalised cyclen europium or terbium complexes and di-azides (CuAAC reactions), are described. While this click reaction worked well for the formation of the homo-Eu(III) and Tb(III) bis-tri-arm cyclen N,N-dimethyl acetamide complexes, 2Eu and 2Tb, and for the homo-Eu(III) chiral N-methylnaphthalene based complexes 3Eu (S,S,S) and 4Eu (R,R,R), the formation of the Eu(III) complex of the primary amide analogue of 2, namely 1Eu, was not successful, clearly demonstrating the effect that the nature of the pendant arms has on this reaction. Furthermore, the click reactions between the free alkyne cyclen bis-derivatives (5-8) and the di-azide were unsuccessful, most likely due to the high affinity of the cyclen macrocycles for Cu(II). The Eu(III) complexes of 2-4 and 2Tb all gave rise to sensitised metal ion centred emission upon excitation of the triazole or the naphthalene antennae in methanol solution, and their hydration states were determined, which showed that while the Eu(III) mono-nuclear complexes had q ~ 2, the click products all had q ~ 1. In the case of 3Eu (S,S,S) and 4Eu (R,R,R), the circular polarised emission (CPL) was also observed for both, demonstrating the chiral environment of the lanthanide centres.  相似文献   

17.
The photochemical control of ground- and excited-state chirality of (M)-cis-(1) and (P)-trans-(2)-2-nitro-7-(dimethylamino)-9-(2',3'-dihydro-1'H-naphtho[2,1-b]-thiopyran-1'-ylidene)-9H-thioxanthene is described. It is shown that while ground state chirality can be controlled photochemically by irradiation with light of different wavelengths, the excited state chirality can be tuned either photochemically in a similar way or by appropriate choice of solvent. In benzene solution, circularly polarized luminescence of the two isomers with opposite ground-state helicity, (M)-cis-1 and (P)-trans-2, revealed corresponding excited states of opposite helicity. On the contrary, in n-hexane solution, circularly polarized luminescence was identical for the two forms indicating identical excited state chirality. Circularly polarized luminescence (CPL), steady-state and time-dependent fluorescence, and time-resolved microwave conductivity (TRMC) measurements in both n-hexane and benzene are reported, which provide an explanation for the remarkable solvent dependence of excited-state chirality.  相似文献   

18.
Circularly polarized luminescence (CPL) of chiral Eu(III) complexes with nona- and octa-coordinated structures, [Eu(R/S-iPr-Pybox)(D-facam)(3)] (1-R/1-S; R/S-iPr-Pybox, 2,6-bis(4R/4S-isopropyl-2-oxazolin-2-yl)pyridine; D-facam, 3-trifluoroacetyl-d-camphor), [Eu(S,S-Me-Ph-Pybox)(D-facam)(3)] (2-SS; S,S-Me-Ph-Pybox, 2,6-bis(4S-methyl-5S-phenyl-2-oxazolin-2-yl)pyridine), and [Eu(Phen)(D-facam)(3)] (3; Phen, 1,10-phenanthroline) are reported, and their structural features are discussed on the basis of X-ray crystallographic analyses. These chiral Eu(III) complexes showed relatively intense photoluminescence due to their (5)D(0) → (7)F(1) (magnetic-dipole) and (5)D(0) → (7)F(2) (electric-dipole) transition. The dissymmetry factors of CPL (g(CPL)) at the former band of 1-R and 1-S were as large as -1.0 and -0.8, respectively, while the g(CPL) of 3 at the (5)D(0) → (7)F(1) transition was relatively small (g(CPL) = -0.46). X-ray crystallographic data indicated specific ligand-ligand hydrogen bonding in these compounds which was expected to stabilize their chiral structures even in solution phase. CPL properties of 1-R and 1-S were discussed in terms of transition nature of lanthanide luminescence.  相似文献   

19.
A new chiral bromobinaphthol-pyrene compound was developed to achieve a green circularly polarized luminescence (CPL) from its excimer with a dissymmetry factor (|glum|) value of 4.3×10-3 and a high quantum yield ΦF, solid up to 55.9%, while no CPL signals could be observed for the blue luminescence from unimolecule. Meanwhile, reversal CPL signals can be observed from both concentrated solution and solid.  相似文献   

20.
The chiroptical signs in circularly polarized luminescence (CPL) and circular dichroism (CD) spectra of chiral binaphthyl fluorophores in solution were found to be controllable by changing the dihedral angle of the binaphthyl unit regardless of the same axial chirality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号