首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A macroporous carbon foam (MCF) possessing three-dimensionally interconnected porous structure, that was composed of macropores, mesopores and micropores, could be synthesized by the oil-in-water (o/w) emulsion templating method using ultrasound. For the preparation of the o/w emulsion as a template of the macropores formed in the MCF, a resorcinol-formaldehyde (RF) solution and cyclohexane were used as an aqueous phase and an oil phase, respectively. We examined the effects of the viscosity of the RF solution, the mass ratio of cyclohexane with the RF solution as well as the concentration of a hydrophilic surfactant (Tween80) contained in the RF solution on the size distribution of the macropores. Consequently, the suitable viscosity of the RF solution to obtain a MCF with a narrow size distribution of the macropores was determined. It was revealed that the size of the macropores increased with the increase in the mass ratio of cyclohexane with the RF solution or with the decrease in the concentration of Tween80. It was possible to increase the porosity of the prepared MCF larger than 90% using a concentrated o/w emulsion as the template of the macropores.  相似文献   

2.
In this paper, monodispersed silica particles were synthesized using tetraethoxysiliane hydrolyzing in ethanol by a Stöber–Fink–Bobn method and then self-assembled on cleaning glass slides to form silica colloidal crystals. After photopolymerization of methacrylic acid mixing with ethylene glycol dimethylacrylate and hydrofluoric acid etching, the pH-responsive polymers were obtained with highly 3D-ordered macroporous structures templated by silica colloidal crystals. These polymers films can swell or deswell in response to external stimuli, causing a change of Bragg diffraction to read pH or ionic strength of various solutions by optical signals or electrochemical signals. As an application, they can be used as chemical sensors to detect pH or ionic strength variation of environment.  相似文献   

3.
An emulsion crystallization method has been demonstrated to measure the nucleation rate of a thermoresponsive colloidal poly-N-isopropylacrylamide (PNIPAM) system. The colloidal PNIPAM suspension was injected into a microfluidic flow-focusing device to generate monodispersed droplets in oil. The temperature was controlled to fine tune the volume fraction of the PNIPAM particles, and the microfluidic flow rate was varied to change the droplet sizes, thus altering the nucleation volume. Using independent droplets, we can isolate the nucleation events to eliminate the interactions among crystallites that existed in bulk or large droplet systems. Therefore, we were able to carry out accurate nucleation rate measurements of colloidal crystals. This emulsion crystallization method is promising for bridging the gap among theories, simulations, and experiments for nucleation kinetics studies.  相似文献   

4.
Hollow capsules of nanometer to micrometer dimensions constitute an important class of materials that are employed in diverse technological applications, ranging from the delivery of encapsulated products for cosmetic and medicinal purposes to their use as light-weight composite materials and as fillers with low dielectric constant in electronic components. Hollow capsules comprising polymer, glass, metal, and ceramic are nowadays routinely produced by using various chemical and physicochemical methods. The current article focuses on a recent novel and versatile technique, based on a combination of colloidal templating and self-assembly processes, developed for synthesizing uniform hollow capsules of a broad range of materials. The strategy outlined readily affords control over the size, shape, composition, and wall thickness of the hollow capsules.  相似文献   

5.
The quantitative theory of the free-radical mechanism in emulsion polymerization is reexamined. A mechanism involving desorption and reabsorption of radicals is discussed. The average number of radicals per particle has been calculated as a function of three parameters. A simplified, approximate solution for the average number of radicals per particle is given for cases where this number is low.  相似文献   

6.
A procedure to obtain hollow colloidal particles has been developed using an emulsion templating technique. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysilane monomer and incorporated in a solid shell using tetraethoxysilane. Hollow shells were obtained by exchange of the core. The formation of the oil droplets was investigated using static light scattering and 29Si solution NMR, and the hollow shells were characterized by electron microscopy and static light scattering. Details on the composition of the shell material were obtained from energy-dispersive X-ray analysis and 29Si solid state NMR, revealing that the shells consist of a hybrid cross-linked network of silica and siloxane units. Confocal microscopy was used to show that the shells are permeable to small dye molecules. The thickness of the coating can be easily varied from a few nanometers upward. Depending on the ratio of shell thickness to particle radius, three types of hollow shells can be distinguished depending on the way in which they buckle upon drying. We designate them as microspheres, microcapsules, and microballoons. As a result of their monodispersity, these particles can be used for making 3D-ordered materials.  相似文献   

7.
8.
The use of spatially nonuniform electric fields for the contact-free colloidal particle assembly into ordered structures of various length scales is a research area of great interest. In the present work, numerical simulations are undertaken in order to advance our understanding of the physical mechanisms that govern this colloidal assembly process and their relation to the electric field characteristics and colloidal system properties. More specifically, the electric-field driven assembly of colloidal silica (d(p) = 0.32 and 2 μm) in DMSO, a near index matching fluid, is studied numerically over a range of voltages and concentration by means of a continuum thermodynamic approach. The equilibrium (u(f) = 0) and nonequilibrium (u(f) ≠ 0) cases were compared to determine whether fluid motion had an effect on the shape and size of assemblies. It was found that the nonequilibrium case was substantially different versus the equilibrium case, in both size and shape of the assembled structure. This dependence was related to the relative magnitudes of the electric-field driven convective motion of particles versus the fluid velocity. Fluid velocity magnitudes on the order of mm/s were predicted for 0.32 μm particles at 1% initial solids content, and the induced fluid velocity was found to be larger at the same voltage/initial volume fraction as the particle size decreased, owing to a larger contribution from entropic forces.  相似文献   

9.
Order-disorder transitions in colloidal systems are an attractive option for making switchable materials. Electric-field-driven order-disorder transitions are especially attractive for this purpose because the tuning parameter is easily and externally controllable. However, precise positional control of 3D structure is immensely challenging. Using patterned electrodes, we demonstrate that ac electric fields-dominantly dielectrophoresis (DEP) coupled with an electrohydrodynamic mechanism consisting of induced-charge electro-osmosis (ICEO)-can be used to template colloidal order dynamically in three dimensions. We find that the electric field geometry dictates the location, size, and shape of colloidal patterns and can produce patterns with surprising complexity.  相似文献   

10.
The stirring-mixing energy is the most obvious factor in the drop size reduction process, but it is not necessarily the most important one. Both the physicochemical formulation and the composition variables are shown to play a determinant role, at constant stirring condition.The generalized formulation versus water/oil ratio diagram allows to map emulsion properties such as emulsion type, stability and viscosity. It is used to discuss the combined effect of the formulation and composition upon the emulsion drop size, through their influences on the interfacial tension, and the emulsion viscosity and stability.  相似文献   

11.
The emulsion polymerization of vinyl acetate has generally been considered a special type of reaction that is not covered by the Smith-Ewart theory. Although the number of particles depends on coalescence rates and can not be predicted by this theory, the polymerization rate data are consistent with the general concepts of Smith and Ewart, including reaction primarily inside swollen polymer particles, escape of radicals from particles, and termination of chains inside the particles. Allowing for rapid exchange of radicals following chain transfer leads to a simple equation which fits much of the published data for cases of both very low and very high values of n , the average number of radicals per particle.   相似文献   

12.
Site-selective Cu deposition on a Si substrate was achieved by a combination of colloidal crystal templating, hydrophobic treatment, and electroless plating. Uniformly sized nano/microstructures were produced on the substrate using a monolayer coating of colloidal spheres instead of a conventional resist. The Cu patterns obtained were of two different types: networklike honeycomb and isolated-island patterns with a minimum period of 200 nm. Each ordered pattern with the desired intervals was composed of clusters of Cu nanoparticles with a size range of 50-100 nm. By the present method, it is possible to control the periodicity of metal arrays by changing the diameter of the colloidal spheres used as an initial mask and to adjust the shape of the metal patterns by changing the mask structure for electroless plating.  相似文献   

13.
The kinetics of the emulsion polymerization of methyl methacrylate at 50°C have been studied in seeded systems using both chemical initiation and γ-radiolysis initiation. Both steady-state rates and (for γ-radiolysis) the relaxation from the steady state were observed. The average number of free radicals per particle was quite high (e.g., ~0.7 for 10?3 mol dm?3 S2O28 initiator). The data are quantitatively interpreted using a generalized Smith–Ewart–Harkins model, allowing for free radical entry, exit, biomolecular termination within the latex particles, and aqueous phase hetero-termination and re-entry. From this treatment, there results (i) the dependence of the termination rate coefficient (kt) on the weight fraction of polymer (wp), (ii) lower bounds for the dependence of the entry rate coefficient on initiator concentration, and (iii) the conclusion that most exited free radicals undergo subsequent re-entry into particles rather than hetero-termination. The results for kt(wp) are consistent with diffusion control at temperatures below the glass transition point. Comparisons are presented of the behavior of methyl methacrylate, butyl methacrylate, and styrene in emulsion polymerization systems.  相似文献   

14.
A kinetic model suitable to deal with the case of branched polymers produced in emulsion both in the case of chain transfer to polymer and propagation to terminal double bond is briefly presented and numerically solved through the method of the moments. Thanks to the “numerical fractionation” approach, the whole molecular weight distribution of the polymer is evaluated while accounting for the compartmentalized nature of the system. The results of some illustrative calculations concerning the effects upon the molecular properties of the final polymer of starved semibatch monomer feed policies, addition of a chain transfer agent and propagation to terminal double bond are discussed.  相似文献   

15.
Using lubrication theory, drying processes of sessile colloidal droplets on a solid substrate are studied. A simple model is proposed to describe temporal dynamics of both the shape of the drop and the volume fraction of the colloidal particles inside the drop. The concentration dependence of the viscosity is taken into account. It is shown that the final shapes of the drops depend on both the initial volume fraction of the colloidal particles and the capillary number. The results of our simulations are in a reasonable agreement with the published experimental data. Computations for the drops of aqueous solution of human serum albumin are presented.  相似文献   

16.
We prepared polymeric microparticles with coordinated patches using oil-in-water emulsion droplets which were stabilized by adsorbed colloidal polystyrene (PS) latex particles. The oil phase was photocurable ethoxylated trimethylolpropane triacrylate (ETPTA), and the particle-armored oil droplets were solidified by UV irradiation within a few seconds to produce ETPTA-PS composite microparticles without disturbing the structures. Large armored emulsion drops became raspberry-like particles, while small emulsion drops with a few anchored particles were transformed into colloidal clusters with well-coordinated patches. For high-molecular-weight PS particles with low chemical affinity to the ETPTA monomer, the morphology of the patchy particle was determined by the volume of the emulsion drop and the contact angle of the emulsion interface on the PS particle surface. Meanwhile, for low-molecular-weight PS particles with high affinity, the ETPTA monomers were likely to swell the adsorbed PS particles, and distinctive morphologies were induced during the shrinkage of emulsion drops and the phase separation of ETPTA from the swollen PS particles. In addition, colloidal particles with large open windows were produced by dissolving the PS particles from the patchy particles. We observed photoluminescent emission from the patchy particles in which dye molecules were dispersed in the ETPTA phase. Finally, we used Surface Evolver simulation to predict equilibrium structures of patchy particles and estimate surface energies which are essential to understand the underlying physics.  相似文献   

17.
This paper describes some approaches toward the templated synthesis of rotaxanes incorporating strapped metalloporphyrin moieties as the shuttle unit, with the thread component containing both a neutral diimide "station" and a functionalized pyridine moiety, the latter acting not only as a template but also as a second binding motif. In the first instance, the use of appropriately 3,5-difunctionalized pyridine esters and naphthoquinol-strapped rhodium(III) chloride porphyrins in a stoppering approach to rotaxanes produced only unlinked components: the flexibility of the strap allowed sufficient room for the potential thread unit to bind on the same face of the porphyrin as the strap, while not being interlocked through it. An alternative strategy involving a 1,3-dipolar cycloaddition reaction (a "click" reaction) between azides and alkynes, producing triazole linkers in the thread component of rotaxanes, was more successful. Both porphyrinic (zinc, free base, and rhodium(III) derivatives) and crown ether rotaxanes were successfully produced, with multifunctional (triazole and naphthodiimide) thread units. The potential for molecular motion through the use of stimuli such as acid, solvent, and competing ligands was investigated, with limited success. The same cycloaddition methodology was extended to pyridine-templated analogues of the thread components in the Rh(III)-strapped porphyrins, but again, only unlinked thread and porphyrin shuttle units were produced.  相似文献   

18.
19.
High surface area mesoporous titanium dioxide (TiO2) particles have been prepared by three different kinds of colloidal aphrons: colloidal gas aphrons, colloidal liquid aphrons, and colloidal emulsion aphrons (CEAs). The precipitate of amorphous TiO2 was prepared by hydrolysis, condensation, and polycondensation reaction of the precursor. The reaction took place under the effect of coulombic repulsion and electrostatic layers of multilayer surfactant molecules. TiO2 particles with various sizes were prepared with different molar ratio of titanium ion to surfactants, which were sodium lauryl sulfate (SDS), cetyltrimetyhlammonium bromide, triblock copolymer Pluronic P123, and triblock copolymer Pluronic F127. The synthesized samples were characterized by X-ray diffraction, Brunauer-Emmett-Teller analysis, N2 adsorption/desorption, and transmission electron microscopy. The mesoporous TiO2 prepared by CEAs method showed a high specific surface area of 224 m2/g with the total pore volume of 0.7751 cm3/g by using SDS as the membrane phase surfactant due to electrostatic attraction favors of anionic surfactant. The solar conversion efficiency of the cell made from TiO2 increases with the combination of increased surface area and total pore volume for higher amount of dye wetting and loading.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号