首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The common points of absorption and heat transfer were found by comparison of the assumptions and transfer model. Furthermore, the computational formula and graphs of the number and the length of a transfer unit were deduced in the countercurrent heat transfer through learning from the treatment method of absorption. Based on the study, the basic analysis methodology for qualitative analysis of operational heat transfer problems was proposed. The connection between mass transfer and heat transfer was established through the comparison, so that they were no longer random knowledge points, which was beneficial for students to understand and master principles of chemical engineering.  相似文献   

2.
孔庆盼 《化学通报》2018,81(9):805-812
固体表面的润湿特性对冷凝传热具有重要的影响。本文分析了冷凝传热的机理,介绍了现阶段对不同冷凝方式的判定方法,总结了不同润湿性表面的制备方法,概述了蒸汽在亲水表面、疏水表面和组合表面上的冷凝传热性能,总结了该领域目前存在的问题。本文为利用表面润湿性强化传热提供了较为系统的综述,为强化冷凝传热提供思路。  相似文献   

3.
An experimental study was carried out to investigate the thermal performance of a flat capillary pumped loop (CPL) using the water based and the ethanol based Cu nanofluids as the working fluids under several steady sub-atmospheric operating pressures. The evaporator of the CPL was placed horizontally and heated from the bottom. The experimental results show that adding Cu nanoparticles into both base fluids can significantly enhance the evaporating heat transfer coefficient and the maximum heat removal capacity. There is an optimal mass concentration of Cu nanoparticles corresponding to the maximum heat transfer enhancement. The operating temperature or the operating temperature has an apparent effect on the heat transfer enhancement. The heat transfer enhancement effects increase distinctly with increasing the operating temperature. The heat transfer coefficient and the maximum heat removal capacity can be increased up to 45% and 16% after substituting Cu-ethanol nanofluids for the base fluids, respectively. The present investigation discovered that the thermal performance of a CPL can be evidently strengthened by using Cu nanofluids.  相似文献   

4.

This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.

  相似文献   

5.
A numerical model of a non-isothermal reactor was investigated subject to a general wall heat transfer boundary condition. Both laminar and plug flow were considered. As part of the investigation, a series of simulations were performed under different conditions with respect to the dimensionless groups appearing in the balance equations. It was observed that the influence of these groups was dependent on the degree of heat transfer within the reactor and with the environment that was occurring. Specifically, three distinct heat transfer regimes were identified. These regimes were themselves functions of the internal and external heat transfer driving forces.  相似文献   

6.
Increasing efficacy of plate heat exchanger (PHE) is a method of reducing energy consumption of milk pasteurization and sterilization in dairy industries. In order to enhance heat transfer capability of water as a hot stream in PHEs, multiwalled carbon nanotubes (MWCNT) were added to water. An experimental setup was designed and manufactured to measure heat transfer coefficient and Nusselt number (Nu) as two key parameters for convective heat transfer. This system had two individual loops for hot and cold fluids. The experimental results clearly indicated that heat transfer coefficient and Nu number of pure water increased by adding MWCNT with weight concentration of less than 1 wt%. With increasing weight concentration of the nanoparticles, heat transfer coefficient and Nu number increased. This augmentation was intensified at higher Peclet numbers which showed more effective presence of them at high flow rates of nanofluids. Moreover, at constant weight concentration, both heat transfer coefficient and Nu number increased. Augmentation of heat transfer capability resulted in more heat exchange with milk fluid in a short time; thus, before occurrence of fouling in plates of exchanger, pasteurization of milk and production of the products would be easier.   相似文献   

7.

In this study, heat transfer and entropy generation were investigated in a microchannel containing FMWNT/water nanofluids given the slip condition. The main focus was on utilizing injection technique in the presence of the magnetic field. The injection from the upper high-temperature wall was incorporated into the flow field. Injection at high Reynolds number causes vortex formation, which ultimately reduces local heat transfer in the adjacent injection zone. By applying the magnetic field, the vortex intensity as well as boundary layer thickness was diminished which in turn improved the heat transfer. Based on numerical results, at higher nanoparticle volume fraction, the effect of the magnetic field on heat transfer enhancement was amplified. Moreover, at higher Reynolds numbers, the magnetic field efficacy is more obvious. The highest heat transfer occurred at the highest values of the Hartmann and Reynolds numbers and eventually the nanoparticle volume fraction. Owing to applying the magnetic field on the injectable microchannel containing nanofluid, heat transfer improvement can reach up to 79%. From the second law prospective, the entropy generation intensified by 82.8%.

  相似文献   

8.
An analysis developed in previous work has been further refined in order to study the effect of heat transfer on the heat capacity and phase angle measurements by TMDSC. In the present model, a temperature gradient within the sample has been taken into account by allowing for heat transfer by thermal conduction within the sample. The influence of the properties of the sensors, the heat transfer conditions between the sensor and sample,and the properties of the sample have been investigated by varying each parameter in turn. The results show that heat capacity measurements are reliable only within a restricted frequency range, for which the experimental conditions are such that the heat transfer phase angle depends linearly on the modulation frequency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This study contains mathematical modelling and numerical analysis of heat transfer in laser beam welding process. The temperature field was obtained on the basis of numerical solution into unsteady heat transfer equation with convective term and volumetric heat sources taken into account. Volumetric heat source model describing laser beam power distribution in combined truncated cone?Ccylinder volume was developed. Due to the wide range of temperatures appearing in the process latent heat of fusion, evaporation as well as latent heat of phase transformations in solid state were taken into account in the solution algorithm. On the basis of developed numerical algorithms an analysis of heat transfer in laser butt-welded steel sheets as a three-dimensional initial-boundary problem was performed.  相似文献   

10.
In this paper, we describe two types of effective events for describing heat transfer in a kinetic Monte Carlo (KMC) simulation that may involve stochastic chemical reactions. Simulations employing these events are referred to as KMC-TBT and KMC-PHE. In KMC-TBT, heat transfer is modeled as the stochastic transfer of "thermal bits" between adjacent grid points. In KMC-PHE, heat transfer is modeled by integrating the Poisson heat equation for a short time. Either approach is capable of capturing the time dependent system behavior exactly. Both KMC-PHE and KMC-TBT are validated by simulating pure heat transfer in a rod and a square and modeling a heated desorption problem where exact numerical results are available. KMC-PHE is much faster than KMC-TBT and is used to study the endothermic desorption of a lattice gas. Interesting findings from this study are reported.  相似文献   

11.
A molecular dynamics simulation was performed to study the effect of an applied force on heat transfer at the interface of model diamond [111] nanosurfaces. The force was applied to a small, hot nanosurface at 800, 1000, or 1200 K brought into contact with a larger, colder nanosurface at 300 K. The relaxation of the initial nonequilibrium interfacial force occurs on a subpicosecond time scale, much shorter than that required for heat transfer. Heat transfer occurs with exponential kinetics and a rate constant that increases linearly with the interfacial force according to 7 x 10(-4) ps(-1)/nN. This rate constant only increases by at most 10% as the temperature of the hot surface is increased from 800 to 1200 K. Replacing the interfacial H-atoms on both surfaces by D atoms also has a very small effect on the heat transfer. However, if one nanosurface has H atoms on its interface and the other nanosurface's interface has D atoms, then there is a marked 25% decrease in the rate constant for heat transfer. Increasing the size of the hot surface, and, thus, the interfacial contact area, increases the rate of heat transfer but not the rate constant. For the same interfacial force, different anharmonic models for the nanosurfaces' potential energy function give the same heat transfer rate constant. The possibility of quantum effects for heat transfer across the diamond interface is considered.  相似文献   

12.

Extended surfaces represent one of practical approaches to enhance heat transfer. Based on the laws of conductive and convective heat transfer, an increase in the area across which the object is in contact with the fluid can increase heat transfer. Due to its special structure, porous media can be seen as suitable alternatives for extended surface applications. On this basis, this research investigates the effect of connection type of sintered porous fins on heat transfer and pressure drop in the fluid flow. Connection model of four- and six-contact sintered balls of constant dimensions was evaluated by means of CFD simulation in this research. To describe the problem further, surface analysis on the reference cube is presented. The results indicate that the six-contact model has more porosity than the four-contact in reference cube by 29.45%. It was further found that the six-contact model tends to increase convective heat transfer by 33%. Results of surface analysis show that the main reasons for the difference in heat transfer between the four- and six-contact models are porosity and the angle at which balls are arranged with another.

  相似文献   

13.
This paper is concerned with a review of heat and mass transfer between thermal plasmas and particulate matter. In this situation various effects which are not present in ordinary heat and mass transfer have to be considered, including unsteady conditions, modified convective heat transfer due to strongly varying plasma properties, radiation, internal conduction, particle shape, vaporization and evaporation, noncontinuum conditions, and particle charging. The results indicate that (i) convective heat transfer coefficients have to be modified due to strongly varying plasma properties; (ii) vaporization, defined as a mass transfer process corresponding to particle surface temperatures below the boiling point, describes a different particle heating history than that of the evaporation process which, however, is not a critical control mechanism for interphase mass transfer of particles injected into thermal plasmas; (iii) particle heat transfer under noncontinuum conditions is governed by individual contributions from the species in the plasma (electrons, ions, neutral species) and by particle charging effects.  相似文献   

14.
The heat exchange is examined in apparatus with agitation devices and installed heat exchange elements using semi-empirical theory of a turbulent transfer. We determined hydrodynamical parameters near a heat transfer surface.  相似文献   

15.
Understanding heat and moisture transfer in a wood specimen as used in the K-tester has led to an unconventional numerical solution and intriguing protocol to deriving the transfer properties. Laplace transform solutions of Luikov's differential equations are derived for one-dimensional heat and moisture transfer in porous hygroscopic orthotropic materials and for a gradual finite heat pulse applied to both surfaces of a flat slab. The K-tester 637 (Lasercomp) supplies a quasi-heat-pulse to both sides of a 2-ft-square specimen and records precise signals as function of time from surface thermocouples and heat flux thermopiles. We obtained transfer properties for moist and oven-dried redwood lumber flooring.  相似文献   

16.
In present types of reaction calorimeters and agitated reaction vessels the overall heat transfer coefficient between reaction mixture and cooling fluid is low, caused by the low heat transfer coefficient on the cooling fluid side. Consequently the thermal response time is high and a quasi-isothermal reaction is difficult to obtain. A new construction of a cylindrical double wall reaction vessel is presented which yields a higher overall heat transfer coefficient than conventional constructions. The cooling fluid flows through a helically shaped flow path between the walls. The outer wall is especially bulged to improve strength and heat transfer. Two reaction vessels are tested yielding good results.  相似文献   

17.
《Liquid crystals》1999,26(7):1047-1051
The 'heat switch' is based on the fact that in some liquid crystal (LC) materials heat transfer depends on the voltage applied between two parallel electrodes containing the sample. The rate of heat transfer depends on the voltage rather than the electric field intensity, but is not understood. Since the heat switch can involve electric field intensities up to at least the breakdown field of air, it is important to understand the mechanism responsible for heat transfer. Results are presented indicating that a mechanism described earlier is involved. A proposal for a refrigerator using LC heat switches is also made.  相似文献   

18.

Nanofluids are obtained by suspending metallic or non-metallic nanoparticles in conventional base liquids and can be employed to increase heat transfer rate in various applications. In this study, the effects of adding three types of nanofluids on turbulent convective heat transfer at the entrance region of a constant wall heat flux tube were experimentally studied. The nanofluids were mixtures of aluminium oxide, copper oxide, and silicon carbide at various nanoparticle volume fractions ranging from 0.0002 to 0.002 in water. The convective heat transfer coefficient was measured at different Reynolds numbers of 10,000–50,000. At these concentrations and Reynolds numbers, a maximum of 11–18% of convection heat transfer coefficient was observed as compared to the base fluid, showing a 6–9% increase on average. In this study, it was observed that changes in the nanoparticle type had no considerable effect on heat transfer coefficient increase. According to the model proposed here, the dimensionless thickness of laminar sub-layer is specified as a functional equation of the volume fraction of nanoparticles for each material.

  相似文献   

19.
Radiative heat transfer could be a significant contribution to the total heat transfer within the highly porous materials. This article reports on the use of a conventional instrument, viz. Fourier transform infrared (FTIR) spectroscopy, for the characterization of radiative heat properties of fiber assemblies with low bulk densities. Experimental measurements on spectral transmission with FTIR were performed on five types of fiber assemblies commonly used for insulating materials. From the measurements, radiative heat conductivity was determined by calculating extinction coefficient using Beer’s Law and applying the diffusion approximation approach. Bulk density, fiber arrangement, and temperature influences to radiative heat transfer were discussed. Results show that radiative heat conductivity decreases with bulk density and that of the random arranged fiber assemblies shows lower radiative heat conductivity than the random ball and parallel arranged fiber assemblies. Radiative heat conductivity is proportional to the cubic temperature. The existing theoretical model was modified by comparing theoretical and experimental radiative heat conductivity results.  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - Nanofluids are suspensions of solid nanoparticles in conventional heat transfer fluids, and they often exhibit improved heat transfer characteristics....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号