首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Thermal Analysis and Calorimetry - Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of...  相似文献   

2.
For this research, an examination on the magnetohydrodynamic flow of a micropolar fluid across a moving vertical porous plate for the presence of thermal radiation is achieved. It is necessary to translate the partial differential equations regulating the flow, heat, & mass transfer into dimensionless form employing proper non-dimensional variables, which are then cracked numerically by utilizing the Finite difference approach. Graphs are used to represent numerical values of various flow profiles; however, tables are used to represent the simulated values of rate coefficients. The velocity rises when the value of Grashof number, dimensionless viscosity ratio is raised, and the opposite effect is seen when the value of magnetic parameter, micro-gyration factor is raised. The result in skin friction coefficient improves when the values of magnetic parameter, micro-gyration factor, Prandtl number, and radiation are raised higher.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - Transfer of heat and mass and thermodynamic irreversibilities are investigated in a porous, parallel-plate microreactor in which the working fluid is...  相似文献   

4.
Journal of Thermal Analysis and Calorimetry - Notwithstanding the widespread use of wind tunnel to investigate the performance of radiators and heat exchangers, has never been considered a...  相似文献   

5.
The steady magnetohydrodynamic (MHD) flow of an incompressible viscous non-Newtonian power law fluid above an infinite rotating porous disk with heat transfer is studied. A uniform magnetic field is applied perpendicularly to the plane of the disk and a uniform injection or suction is applied through the surface of the disk. Numerical solutions of the nonlinear differential equations which govern the hydromagnetic and heat transfer are obtained. The effects of characteristics of the non-Newtonian fluid, the magnetic field parameter and the suction or injection velocity on the velocity and temperature distributions are considered.  相似文献   

6.
7.
Journal of Thermal Analysis and Calorimetry -  相似文献   

8.
In this paper, we investigate the fully developed, laminar, forced convection flow of an electrically non-conducting, viscous, biomagnetic fluid in the 2D cross-section (cavity) of a long impermeable pipe. The fluid is under the influence of a point magnetic source placed below the cavity. The dual reciprocity boundary element method (DRBEM) with constant and linear elements is used for solving the governing equations resulting from the Navier–Stokes and energy equations together with magnetization and buoyancy forces. The fundamental solution of Laplace equation is made use of converting differential equations to boundary integral equations by taking all the terms other than Laplacian as inhomogeneity in the Poisson’s equations for the velocity components, pressure and the temperature of the fluid. The unknown pressure boundary conditions are approximated through momentum equations by using finite difference approximation for the pressure gradients and DRBEM coordinate matrix for the other terms. All the space derivatives are also calculated by DRBEM coordinate matrix which is one of the main advantages of DRBEM. Pipe axis velocity is also computed. The effects of magnetization and the buoyancy force on the fluid with or without viscous dissipation term in the energy equation are investigated in square and lid-driven cavities for several values of magnetic (Mn) and Rayleigh (Ra) numbers. It is observed that the flow and heat transfer are significantly affected with increasing values of Mn and Ra. DRBEM gives small sized linear systems due to its boundary only nature at a considerably low computational expense.  相似文献   

9.

This research article investigates that how heat flow changes versus temperature or time on the rheology of magnetohydrodynamic Brinkman fluid embedded in porous medium for the oscillations of heated plate. A fractional approach namely Caputo–Fabrizio fractional operator is applied for developing the governing partial differential equations of Brinkman fluid flow. The fractional governing partial differential equations have been modeled for temperature distribution, mass concentration and velocity field along with imposed initial and boundary conditions. The solutions are obtained by integral transforms and presented in special and elementary functions. In the limiting sense, the analytical solutions are particularized in the presence and absence of heat and mass transfer, magnetic field and porous medium. The parametric graphs have been depicted for the influence of different embedded rheological parameters on fluid flow. The results show few interesting differences and similarities by comparative analysis for fractional and ordinary Brinkman fluid flow, such as physically higher Prandtl (Pr) number that leads to decay thermal diffusivity which results in the reduction in thermal field; this means that better quality of production can be achieved through proper choice of Prandtl (Pr) and Schmidt (Sc) numbers.

  相似文献   

10.
Journal of Thermal Analysis and Calorimetry - This paper presents that how the characteristics of thermal radiation depend on the temperature of unsteady gravity-driven thermal convection flow of...  相似文献   

11.
The objective of this study was to understand fluid heat and mass transfer processes in porous media with different pore structures. High-resolution Magnetic Resonance Imaging was used to measure fluid flow velocity and temperature maps in porous media. Firstly, three orthogonal velocity components (V x , V y , and V z ) of single phase flow measurement were evaluated. The flow distribution in porous media is rather heterogeneous, and it is consistent with heterogeneous pore structure, and the velocity in large pore is high. Then we presented initial results from the extension of this work to two-phase flow. The CO2 channeling phenomena were obvious. And the CO2 velocity was calculated from saturation of water. Finally, the linearity relationship between temperature and the MRI parameter was determined for porous media, and we measured the temperature distribution of water saturated porous media. The study provides useful data for heat and mass process during CO2 storage.  相似文献   

12.
Journal of Thermal Analysis and Calorimetry - The present study investigates the thermal characteristics of a proposed porous heat exchanger (PHE). This heat exchanger consists of three sections,...  相似文献   

13.
《印度化学会志》2023,100(1):100845
This work aims to study the MHD boundary layer flow of Williamson micropolar fluid pasting a non-linearly stretching sheet under the existence of nonlinear heat absorption/generation term, which arises in convection due to high temperature and is the novelty of the present work. The governing equations corresponding to the above physical configuration have been considered in view of the modified Darcy Law with appropriate boundary conditions. Thereafter making use of suitable similarity transformation by introducing stream function, the revised governing equations in the form of ODE with boundary conditions have been obtained. This boundary value problem have been solved numerically by using the shooting technique. The effect of various parameters on flow variables like velocity, temperature, and microrotation has been depicted through graphs. Also, the present analysis's results are compared with those obtained earlier to ensure the numerical validation of the present analysis. In particular, It is observed that the Hartmann number and Williamson parameter have the effect of increasing skin friction.  相似文献   

14.

Turbulent flow characteristics and heat transfer applications of a twisted heat exchanger with 3-lobed cross section along with Y-tape insert are numerically studied. The working fluids for the simulations are pure water and water–Al2O3 nanofluid using two-phase mixture model. The study is carried out for various nanofluid volume fractions of 0.01, 0.02 and 0.03 with Reynolds number in the range of 5000–20,000. The effect of nanoparticles in heat transfer augmentation for smooth and lobed tubes is discussed based on presenting the highest thermal performance, which is a relation between heat transfer rate and pressure loss. Results show that implementing the twisted tube with Y-tape insert enhances the heat transfer more than the twisted tube. Relative Nusselt numbers for twisted tubes decrease with Reynolds number in comparison with the plain tube. Turbulent intensity, swirl number and tangential velocity of twisted tube with insert are higher than empty twisted tube indicating that inserting the Y-tape intensifies the turbulence and disturbs the fluid flow further. On the other hand, although the twisted tube increases the pressure drop more than plain tube, the case with Y-tape drastically increases the friction factor. So, the thermal performance of twisted tube with insert is lower than empty twisted tube. Adding nanoparticles to the base fluid has different influence on the investigated cases. It augments the relative Nusselt number inside plain tube and empty twisted tube with slight increment in friction factor. Increasing the nanoparticles concentration enhances the heat transfer rates for these cases while it does not increase the relative Nusselt number inside twisted tube with Y-tape insert at high Reynolds number and nanoparticle concentration. Moreover, it can be found that twisted tube with or without Y-tape insert is more efficient at low Reynolds number in comparison with the plain tube.

  相似文献   

15.
Journal of Thermal Analysis and Calorimetry - Mucus transport mediated by motile cilia in the airway is an important defense mechanism for prevention of respiratory infections. Cilia motility can...  相似文献   

16.
The main theme of the present work is to investigate the electrokinetic effects on liquid flow and heat transfer in a flat microchannel of two parallel plates under asymmetric boundary conditions including wall-sliding motion, unequal zeta potentials, and unequal heat fluxes on two walls. Based on the Debye-Huckel approximation, an electrical potential solution to the linearized Poisson-Boltzmann equation is obtained and employed in the analysis. The analytic solutions of the electrical potential, velocity distributions, streaming potential, friction coefficient, temperature distribution, and heat transfer rate are obtained, and thereby the effects of electrokinetic separation distance (K), zeta-potential level (zeta;(1)), ratio of two zeta potentials (r(zeta) identical with zeta;(2)/zeta;(1)), wall-sliding velocity (u(w)), and heat flux ratio (r(q) identical with q"(2)/q"(1)) are investigated. The present results reveal the effects of wall-sliding and zeta-potential ratio on the hydrodynamic nature of microchannel flow, and they are used to provide physical interpretations for the resultant electrokinetic effects and the underlying electro-hydrodynamic interaction mechanisms. In the final part the results of potential and velocity fields are applied in solving the energy equation. The temperature distributions and heat transfer characteristics under the asymmetrical kinematic, electric, and thermal boundary conditions considered presently are dealt with.  相似文献   

17.
Journal of Thermal Analysis and Calorimetry - The purpose of this study is to experimentally and numerically investigate the effects of rotation number on heat transfer and fluid flow in a...  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - In this paper, it has been discussed a nonlocal fractional model of viscous nanofluid holding a hybrid nanostructure. Hybridized copper (Cu) and...  相似文献   

19.
预混天然气在多孔介质燃烧器中的燃烧与传热   总被引:2,自引:1,他引:1  
在一台小型渐变型多孔介质燃烧器上进行了预混天然气燃烧与传热试验研究,探讨了天然气速度和多孔介质厚度对多孔介质燃烧室的温度分布、排烟温度和流动阻力的影响。结果表明,天然气在渐变型多孔介质燃烧器中燃烧稳定,燃烧室与水冷夹套间的换热受天然气速度和多孔介质厚度影响,换热效果比空管中燃烧明显增强,同时预混天然气通过多孔介质的进出口压差随着天然气速度和多孔介质厚度的增加而增加。  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - A numerical model is developed to study the effects of temperature-dependent viscosity on heat transfer in magnetohydrodynamic flow of micropolar fluid...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号