首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quaternary Cu2ZnSnS4 (CZTS) thin films, a promising absorber material for solar cells has been successfully deposited on glass substrates by cost effective simple dip-coating method without using either polluting chemicals or expensive vacuum facilities. X-ray diffraction pattern reveals the formation of CZTS films with tetragonal type kesterite structure. The Raman spectra of the prepared films exhibited resonance peaks corresponding to the CZTS phase. The scanning electron microscopic image shows the formation of films with smooth surface. The surface topography studied using atomic force microscope gives an rms roughness of 1.6 nm. The Hall effect studies indicate that the prepared films are p-type with a carrier concentration of 4.77 × 1020 cm?3. The energy dispersive X-ray analysis result indicate the presence of Cu, Zn, Sn and S in the film. The absorption coefficient was found to be the order of 104 cm?1 and the band gap has been found to be 1.5 eV.  相似文献   

2.
Power generation through photovoltaics (PV) has been growing at an average rate of 40% per year over the last decade; but has largely been fuelled by conventional Si-based technologies. Such cells involve expensive processing and many alternatives use either toxic, less-abundant and or expensive elements. Kesterite Cu(2)ZnSnS(4) (CZTS) has been identified as a solar energy material composed of both less toxic and more available elements. Power conversion efficiencies of 8.4% (vacuum processing) and 10.1% (non-vacuum processing) from cells constructed using CZTS have been achieved to date. In this article, we review various deposition methods for CZTS thin films and the synthesis of CZTS nanoparticles. Studies of direct relevance to solar cell applications are emphasised and characteristic properties are collated.  相似文献   

3.
Highly ordered quaternary semiconductor Cu(2)ZnSnS(4) nanowires array have been prepared via a facile solvothermal approach using anodic aluminum oxide (AAO) as a hard template. The as-prepared nanowires are uniform and single crystalline. They grow along either the crystalline [110] or [111] direction. The structure, morphology, composition, and optical absorption properties of the as-prepared Cu(2)ZnSnS(4) samples were characterized using X-ray powder diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectrometry. A possible formation mechanism of the nanowire arrays is proposed. Governed by similar mechanism, we show that Cu(2)ZnSnSe(4) nanowire array with similar structural characteristics can also be obtained.  相似文献   

4.
Here we present for the very first time a single-crystal investigation of the Cu-poor Zn-rich derivative of Cu(2)ZnSnS(4). Nowadays, this composition is considered as the one that delivers the best photovoltaic performances in the specific domain of Cu(2)ZnSnS(4)-based thin-film solar cells. The existence of this nonstoichiometric phase is definitely demonstrated here in an explicit and unequivocal manner on the basis of powder and single-crystal X-ray diffraction analyses coupled with electron microprobe analyses. Crystals are tetragonal, space group I ?4, Z = 2, with a = 5.43440(15) ? and c = 10.8382(6) ? for Cu(2)ZnSnS(4) and a = 5.43006(5) ? and c = 10.8222(2) ? for Cu(1.71)Zn(1.18)Sn(0.99)S(4).  相似文献   

5.
A new wurtzite phase Cu(2)ZnSnS(4) was discovered and the corresponding nanocrystals have been successfully synthesized. They have been characterized in detail and showed the photoelectric response, which demonstrated their potential in the application of photovoltaic devices.  相似文献   

6.
Starting with metal dithiocarbamate complexes, we synthesize colloidal Cu(2)ZnSnS(4) (CZTS) nanocrystals with diameters ranging from 2 to 7 nm. Structural and Raman scattering data confirm that CZTS is obtained rather than other possible material phases. The optical absorption spectra of nanocrystals with diameters less than 3 nm show a shift to higher energy due to quantum confinement.  相似文献   

7.
A procedure for the continuous production of Cu(2)ZnSnS(4) (CZTS) nanoparticles with controlled composition is presented. CZTS nanoparticles were prepared through the reaction of the metals' amino complexes with elemental sulfur in a continuous-flow reactor at moderate temperatures (300-330 °C). High-resolution transmission electron microscopy and X-ray diffraction analysis showed the nanocrystals to have a crystallographic structure compatible with that of the kesterite. Chemical characterization of the materials showed the presence of the four elements in each individual nanocrystal. Composition control was achieved by adjusting the solution flow rate through the reactor and the proper choice of the nominal precursor concentration within the flowing solution. Single-particle analysis revealed a composition distribution within each sample, which was optimized at the highest synthesis temperatures used.  相似文献   

8.
以乙酰丙酮铜、醋酸锌、二氯亚锡、油胺和硫粉为前驱体,采用one-pot法合成出了单分散的Cu2ZnSnS4(CZTS)纳米晶.所得样品采用X射线粉末衍射仪(XRD),能量色散谱仪(EDS),透射电子显微镜(TEM),高分辨透射电子显微镜(HRTEM),光电子能谱仪(XPS),紫外-可见光谱仪(UV-vis)和Z-扫描(Z-scan)技术对其结构组成、形貌、性能等进行了表征.结果表明:所获得的产物为四方相结构的六边形CZTS纳米颗粒,直径约为10 nm.计算出尺寸大小为10 nm,13 nm的纳米晶的三阶非线性光学折射率γ(-1.08×10-15,-9.08×10-17 m2·W-1),三阶非线性光学吸收系数β(6.5×10-9,3.69×10-11 m·W-1)以及三阶非线性光学极化率χ(3)(1.49×10-9,4.35×10-10 esu).并探讨了CZTS纳米晶可能的形成机理,及引起三阶光学非线性发生变化的原因。  相似文献   

9.
The quaternary copper chalcogenide Cu(2)ZnSnS(4) is an important emerging material for the development of low-cost and sustainable solar cells. Here we report a facile solution synthesis of stoichiometric Cu(2)ZnSnS(4) in size-controlled nanorod form (11 nm × 35 nm). The monodisperse nanorods have a band gap of 1.43 eV and can be assembled into perpendicularly aligned arrays by controlled evaporation from solution.  相似文献   

10.
通过简单的溶剂热法合成了锌黄锡矿结构的Cu2ZnSnS4(CZTS)纳米晶,使用L-半胱氨酸作硫源和络合剂,以金属氯化物作前驱体,在180°C下反应16h成功获得了CZTS微球.使用X射线衍射(XRD)仪,场发射扫描电子显微镜(FESEM)、能量色散谱(EDS)、高分辨透射电子显微镜(HRTEM)、多功能X射线光电子能谱仪(XPS)、紫外-可见(UV-Vis)分光光度计对产物的物相、结构、形貌及光学性能进行表征.结果表明:所得的产物为纯相锌黄锡矿结构的CZTS纳米颗粒,CZTS微球直径为400-800nm,并可观察到微球是由大量厚度约20nm的纳米片构成;将CZTS颗粒均匀分散在异丙醇中,测试后估算其禁带宽度约1.58eV,与薄膜太阳能电池所需的最佳禁带宽度相近.并对其形成机理进行了初步探讨.  相似文献   

11.
Improvement of the efficiency of Cu(2)ZnSnS(4) (CZTS)-based solar cells requires the development of specific procedures to remove or avoid the formation of detrimental secondary phases. The presence of these phases is favored by the Zn-rich and Cu-poor conditions that are required to obtain device-grade layers. We have developed a selective chemical etching process based on the use of hydrochloric acid solutions to remove Zn-rich secondary phases from the CZTS film surface, which are partly responsible for the deterioration of the series resistance of the cells and, as a consequence, the conversion efficiency. Using this approach, we have obtained CZTS-based devices with 5.2% efficiency, which is nearly twice that of the devices we have prepared without this etching process.  相似文献   

12.
锌黄锡矿结构的CZTS(铜锌锡硫)材料与目前在薄膜太阳能电池领域表现出色的黄铜矿结构的CIGS(铜铟镓硒)材料具有相似的晶体结构,且CZTS有着很好的光电性能,组成元素在地球上含量丰富,安全无毒,非常适合用来发展高效、廉价的太阳能电池.近期CZTS类太阳能电池的最高效率已达到12.6%,在科研和产业领域引起了广泛关注.在简介了“新星”太阳能电池材料CZTS的性质及薄膜太阳能电池器件的基本结构之后,重点总结了CZTS薄膜的制备方法(真空、非真空法)以及相应器件效率,其中对众多非真空制备法进行了独到的归类总结.最后,对CZTS薄膜的优化方法进行了分析,并对其未来发展方向做了展望.  相似文献   

13.
Wei  Liguo  Wu  Qinhang  Chen  Wei  Wang  Dong  Jiang  Bo  Sun  Gonglei  Yu  Furong  Feng  Jing  Yang  Yulin 《Journal of Solid State Electrochemistry》2020,24(2):263-272
Journal of Solid State Electrochemistry - The catalytic activity and conductivity of Cu2ZnSnS4/graphene counter electrode for dye-sensitized solar cells (DSSCs) was balanced using...  相似文献   

14.
15.
16.
17.
This paper aims to estimate the band alignment to CdS/CZTS hetero-interface by direct X-ray photoelectron spectroscopy (XPS) measurements. XPS was used to determinate the valence-band offset (VBO) directly by determining the valence band positions at the hetero-interface. The conduction band offset (CBO) value was estimated based on the band gap measurements by UV/Visible spectroscopy and VBO measurements. The position of valence band (VB) changes close to the CdS-CZTS interface and the CBO is cliff-like. The band alignment diagram indicates that the CdS-CZTS interface heterojunction is type II.  相似文献   

18.
A heterojunction between a layer of CZTS nanoparticles and a layer of fullerene derivatives forms a pn-junction. We have used such an inorganic-organic hybrid pn-junction device for solar cell applications. As routes to optimize device performance, interdot separation has been reduced by replacing long-chain ligands of the quantum dots with short-chain ligands and thickness of the CZTS layer has been varied. We have shown that the CZTS-fullerene interface could dissociate photogenerated excitons due to the depletion region formed at the pn-junction. From capacitance-voltage characteristics, we have determined the width of the depletion region, and compared it with the parameters of devices based on the components of the heterojunction. The results demonstrate solar cell applications based on nontoxic and earth-abundant materials.  相似文献   

19.
赵响  赵宗彦 《化学进展》2015,27(7):913-934
四元化合物半导体铜锌锡硫(Cu2 ZnSnS4,CZTS)由于其四种组成元素在地壳中丰度非常高且安全无毒,因而成本低廉。CZTS作为直接带隙半导体材料,其吸收光谱与太阳辐射光谱匹配性好、光吸收系数高,具有结构与性质可调可控、光电性能优异等优势,是发展绿色、低成本、高效率和稳定薄膜太阳电池的理想核心材料。近年来,国内外研究者对CZTS的结构与性质、制备工艺、应用尤其是通过结构、成分的调控提高其光电转换效率等方面进行了广泛的研究和探讨。本文对CZTS的结构演变、制备工艺、光电性质与应用等进行综述,重点分析了晶体结构、缺陷、表面与界面、合金化等因素对其光伏性能的影响。同时,对CZTS作为新型能量转换材料在光催化和热电等领域的应用进行了探讨。最后对CZTS目前存在的挑战和今后的研究重点进行总结并展望了将来可能的突破方向。  相似文献   

20.
Russian Journal of Electrochemistry - This paper concentrates on the electrodeposition of CZTS kesterite thin films on ITO coated glass. The main objective of the article is to compare the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号