首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of nanofluids in energy systems is developing day by day. Before using a nanofluid in an energy system, it is necessary to measure the properties of nanofluids. In this paper, first the results of experiments on the thermal conductivity of MgO/ethylene glycol (EG) nanofluids in a temperature range of 25–55 °C and volume concentrations up to 5 % are presented. Different sizes of MgO nanoparticles are selected to disperse in EG, including 20, 40, 50, and 60 nm. Based on the results, an empirical correlation is presented as a function of temperature, volume fraction, and nanoparticle size. Next, the model of thermal conductivity enhancement in terms of volume fraction, particle size, and temperature was developed via neural network based on the measured data. It is observed that neural network can be used as a powerful tool to predict the thermal conductivity of nanofluids.  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - Nanofluids are employed in different thermal devices due to their enhanced thermophysical features which lead to noticeable heat transfer augmentation....  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in different heat transfer fluids...  相似文献   

4.
Journal of Thermal Analysis and Calorimetry - Oscillating heat pipes (OHPs) are applicable in different energy systems such as solar collectors, desalinations and fuel cells as thermal mediums or...  相似文献   

5.
6.
Journal of Thermal Analysis and Calorimetry - The quantitative structure–property relationship for the decomposition temperature (Td) of energetic cocrystals was investigated. The artificial...  相似文献   

7.
Journal of Thermal Analysis and Calorimetry - In the current research, viscosity and thermal conductivity of hybrid Cu/CNTs water-based nanofluids were investigated at various concentrations of...  相似文献   

8.
Journal of Thermal Analysis and Calorimetry - In the present study, a comprehensive model based on least square support vector machine algorithm (LSSVM) was developed to estimate thermal...  相似文献   

9.
Zvi Boger   《Analytica chimica acta》2003,490(1-2):31-40
Instrumentation spectra used for chemometrics analysis are often too unwieldy to model, as many of the inputs do not contain important information. Several mathematical methods are used for reducing the number of inputs to the significant ones only. Artificial neural networks (ANN) modeling suffers from difficulties in training models with a large number of inputs. However, using a non-random initial connection weight algorithm and local minima avoidance and escape techniques can overcome these difficulties. Once the ANN model is trained, the analysis of its connection weights can easily identify the more relevant inputs. Repeating the process of training the ANN model with the reduced input set and the selection of the more relevant inputs can proceed until a quasi-optimal, small, set of inputs is identified. Two examples are presented—finding the minimal set of wavelengths in benchmark diesel fuel NIR spectra, and in spectra generated in a recent work, modeling of “artificial nose” sensor array. In the last example, 1260 inputs were reduced to optimal sets of <10 inputs. Causal index calculation can analyze the influence of each of selected wavelengths on the predicted property. Some of the resulting minimal sets are not unique, depending on the ANN architecture used in the training. The accuracy of the resulting ANN models is usually better, and more robust, than the original large ANN model.  相似文献   

10.
11.
12.
A study of thermal properties of CuO dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K has been performed. Thermal conductivities have been studied by the steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels. Heat capacities have been measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” Results for thermal conductivities can be well justified using a classical model (Hamilton–Crosser), and experimental measurements of heat capacities can be justified with a model of particles in thermal equilibrium with the base fluid.  相似文献   

13.
The application of an internal standard in quantitative analysis is desirable in order to correct for variations in sample preparation and instrumental response. In mass spectrometry of organic compounds, the internal standard is preferably labelled with a stable isotope, such as 18O, 15N or 13C. In this study, a method for the quantification of fructo-oligosaccharides using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS) was proposed and tested on raftilose, a partially hydrolysed inulin with a degree of polymeration 2-7. A tetraoligosaccharide nystose, which is chemically identical to the raftilose tetramer, was used as an internal standard rather than an isotope-labelled analyte. Two mathematical approaches used for data processing, conventional calculations and artificial neural networks (ANN), were compared. The conventional data processing relies on the assumption that a constant oligomer dispersion profile will change after the addition of the internal standard and some simple numerical calculations. On the other hand, ANN was found to compensate for a non-linear MALDI response and variations in the oligomer dispersion profile with raftilose concentration. As a result, the application of ANN led to lower quantification errors and excellent day-to-day repeatability compared to the conventional data analysis. The developed method is feasible for MS quantification of raftilose in the range of 10-750 pg with errors below 7%. The content of raftilose was determined in dietary cream; application can be extended to other similar polymers. It should be stressed that no special optimisation of the MALDI process was carried out. A common MALDI matrix and sample preparation were used and only the basic parameters, such as sampling and laser energy, were optimised prior to quantification.  相似文献   

14.
Journal of Thermal Analysis and Calorimetry - In this study, the influence of incorporating MWCNT on the thermal conductivity of paraffin was evaluated numerically. Input variables including mass...  相似文献   

15.
16.
17.
An artificial neural network (ANN) model for the prediction of retention times in high-performance liquid chromatography (HPLC) was developed and optimized. A three-layer feed-forward ANN has been used to model retention behavior of nine phenols as a function of mobile phase composition (methanol-acetic acid mobile phase). The number of hidden layer nodes, number of iteration steps and the number of experimental data points used for training set were optimized. By using a relatively small amount of experimental data (25 experimental data points in the training set), a very accurate prediction of the retention (percentage normalized differences between the predicted and the experimental data less than 0.6%) was obtained. It was shown that the prediction ability of ANN model linearly decreased with the reduction of number of experiments for the training data set. The results obtained demonstrate that ANN offers a straightforward way for retention modeling in isocratic HPLC separation of a complex mixture of compounds widely different in pKa and log Kow values.  相似文献   

18.
A very sensitive, simple and selective spectrophotometric method for simultaneous determination of phosphate and silicate based on formation of phospho- and silicomolybdenum blue complexes in the presence of ascorbic acid is described. Although the complexes of phosphate and silicate with reagent in the presence of ascorbic acid show a spectral overlap, they have been simultaneously determined by principal component artificial neural network (PC-ANN). The PC-ANN architectures were different for phosphate and silicate. The output of phosphate PC-ANN architecture was used as an input for silicate PC-ANN architecture. This modification improves the capability of silicate PC-ANN model for prediction of silicate concentrations. The linear range was 0.01-3.00 microg mL(-1) for phosphate and 0.01-5.00 microg mL(-1) for silicate. Interference effects of common anions and cations were studied and the proposed method was also applied satisfactorily to the determination of phosphate and silicate in detergents.  相似文献   

19.
Several researchers have reported numerous measurements on ultrasonic velocity as a function of temperature and pressure using various experimental techniques. A large amount of experimental data is required in order to obtain accurate results for the chemical substances used. The present article explores the evaluation of ultrasonic velocity as a function of molecular weight, temperature and pressure using an artificial neural network (ANN) in six refrigerants. The network so developed predicts the ultrasonic velocity successfully. Statistical analysis of the results was performed using standard deviation (%) and relative average deviation. The correlation coefficient in our analysis was found to be 0.9999. The trained weights, obtained from ANN, are further employed to form equations to predict ultrasonic velocity at other temperatures and pressures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号