首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag/CdTe nanocomposite was prepared via self-organization process by electrostatic interaction between positively charged CdTe quantum dots and negatively charged Ag nanoparticles and examined with respect to their optical properties. The positively charged CdTe quantum dots and negatively charged Ag nanoparticles were synthesized separately by modifying nanoparticles surface with cationic and anionic thiol compounds, respectively. The result showed that the mixing ratio of Ag nanoparticles to CdTe quantum dots is an important parameter for controlling resulting composites. The resulting solution is optically transparent if one component is in excess. Photoluminescence of CdTe quantum dots undergoes considerably quenching if CdTe nanocrystals are in excess and SERS spectra of BVPP absorbed on Ag colloid became stronger if Ag nanoparticles are in excess. Nevertheless, while the ratio is approximately 1, micrometer-sized solid composite is obtained with the elapse of 1h after mixing. SERS spectra for solid composite only exhibit the signals of the CdS nanocrystal which reflected that prolonged refluxing during the synthesis leads to a partial hydrolysis of the thiols and to the incorporation of the sulfur from the thiol molecules into the the growing nanoparticles to form mixed CdTe(S) nanocrystal, similar to CdTe/CdS core/shell structure. From the results, we conclude that optical properties of Ag/CdTe are dependent on the mixing ratio of both nanoparticles.  相似文献   

2.
New hybrid optical sensors have been prepared by grafting specifically designed fluorescent, functionalised, phosphorus-containing dendrimers onto a nanocrystalline mesoporous titania thin film formed by evaporation-induced self-assembly. The structural characterisation and optical behaviour of these new fluorescent probes have been studied both in solution and after being grafted onto an inorganic network, which resulted in the discovery of improved probing selectivity in the solid state. This new hybrid sensor exhibits high sensitivity to phenolic OH moieties (especially those from resorcinol and 2-nitroresorcinol), which induce the quenching of fluorescence more efficiently in the solid state than in solution. This effect is a result of the increased spatial proximity of the fluorescent molecules, which is induced by pore confinement that makes the formation of hydrogen bonds between the hydroxyl moieties of the quenchers and the carbonyl groups of the dendrimer easier.  相似文献   

3.
Acrylamide (AAm)‐2‐acrylamide‐2‐methylpropanesulfonic acid sodium salt (AMPSNa) hydrogel and AAm‐AMPSNa/clay hydrogel nanocomposite having 10 w% clay was prepared by in situ copolymerization in aqueous solution in the presence of a crosslinking agent (N,N′‐methylenebisacrylamide (NMBA)). Swelling properties and kinetics of the hydrogel samples were investigated in water and aqueous solutions of the Safranine‐T (ST) and Brilliant Cresyl Blue (BCB) dyes. The swelling and diffusion parameters were also calculated in water and dye solutions. It was observed that the AAm‐AMPSNa/clay hydrogel nanocomposite exhibits improved swelling capacity compared with the AAm‐AMPSNa hydrogel. It was also found that the diffusion mechanisms show non‐Fickian character. Adsorption properties of the hydrogel samples in the aqueous solution of ST and BCB dyes were also investigated. Clay incorporation into the hydrogel structure increased not only the adsorption capacity but also the adsorption rate. Adsorption capacity values of the hydrogel nanocomposite were found to be 484.2 and 494.2 mg g?1 for the ST and BCB dyes, respectively. It was seen that the adsorption of dyes by the hydrogel nanocomposite completed in 10 min while the AAm‐AMPSNa hydrogel adsorbed dyes approximately in 90 min. Adsorption data of the samples were modelled by the pseudo‐first‐order and pseudo‐second‐order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of hydrogel nanocomposite followed a pseudo‐second‐order model. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Langmuir model fits the adsorption data better than the Freundlich model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Heavy-metal pollution has attracted intensive attention from the public because of the severe threats of heavy metals to the ecosystem and human health. Ultralow concentration of heavy metals in aquatic environment leads to the urgent needs of sensitive approaches for heavy-metal detection. Electrochemical DNA biosensors present outstanding superiority in convenience, selectivity, and sensitivity compared with conventional methods. To achieve the ultralow detection limit, efforts have been made to implement signal enhancement strategies to develop electrochemical DNA biosensors with enhanced sensing performance. This review focuses on the recent progress in signal enhancement strategies applied to electrochemical DNA biosensors for heavy-metal-ion detection including nicking enzyme–assisted amplification, the utilization of core–shell nanoparticles, and nanocomposites modification.  相似文献   

5.
Super absorbent polymers (SAPs) are of great significance in industry and personal care, etc. The study aims to introduce novel nanocomposite SAPs that are able to uptake very high water content while maintaining excellent strength. The polymers are synthesized by in situ polymerization with the presence of exfoliated montmorillonite (MMT) and trace amount of crosslinkers. SEM images show macroporous structures of these nanocomposites, while TEM images demonstrate excellent distribution of the MMT nanosheets in the polymer matrix. The effect of clay content on the equilibrium water uptake has been systematically investigated. More importantly, the highly swollen nanocomposite SAPs show very high tensile strength (up to 550 kPa), which is much higher than those reported in literature and used in the market. These SAPs with high water uptake and strength may find applications in agriculture and oil fields.  相似文献   

6.
Different types of nanocomposite materials have been synthetized within seconds at ambient temperature, by photoinitiated crosslinking polymerization of epoxy, vinyl ether and acrylate-based resins containing a small amount (3 wt%) of an organoclay filler. The curing process was followed quantitatively by infrared spectroscopy through the decrease upon UV exposure of the IR bands characteristic of the functional groups. The silicate nanoparticles were found to have no effect on the polymerization kinetics. The UV-cured nanocomposites proved to be more flexible and impact resistant than the corresponding microcomposites. This method of synthesis of nanocomposites presents the advantages associated with the UV-curing technology, namely a solvent-free resin transformed rapidly at ambient temperature into a chemically resistant material, with a minimum consumption of energy.  相似文献   

7.
Nylon6/clay nanocomposite is prepared by mixing organized montmorillonite with nylon6 in HAAKE mixer. Solvent permeation resistance of the nanocomposite is measured to estimate the resistance to solvent permeation. The nanocomposite shows resistance to solvent permeation superior to that of pure nylon6. In addition, the clay content was found to significantly influence the solvent permeation resistance of nylon6, and the maximum improvement in barrier properties of nylon6/clay composite was found as the clay content reached an “optimum” value. By using proper composites and processing conditions, the permeation rate of toluene and ethanol in nylon6/clay nanocomposite is about 3 and 4 times slower than that in pure nylon6 at 50 °C. Our investigation indicated that the crystalline property of nylon6 has a strong impact on the sorption and diffusion of small molecules in the polymer. The improvement in solvent barrier properties of nylon6/clay nanocomposite is attributable to incorporation of an impermeable phase such as the layered silicate, improvement in crystallinity and decrease of crystalline dimension, which are evidenced by XRD, AFM, DSC and polarized optical microscopy (POM) studies.  相似文献   

8.
9.
10.
The suitability of isotachophoresis for the analysis of metals in, e.g., environmental samples was studied. In a cationic operational system the heavy metals Fe, Cu, Ni, Cd, Co, Zn, Pb and Mn were simultaneously determined. The separation was achieved through complex formation with one of the counter ions, hydroxyisobutyric acid. The other counter ion was acetic acid, the leading ion was 0.02 M potassium or sodium (pH 4.1) and the terminator was H+. The analysis time was 15 min at 60 microA in a 0.2 mm I.D. capillary. Aqueous samples containing ppm and ppb amounts were enriched on a cation exchanger with an extremely low affinity for sodium (Chelex 100). Good recovery, linearity, precision and accuracy were obtained even down to the ppb range. Although the sensitivity of the method is not greater than that of some of the more established methods for the individual metals, a great advantage of isotachophoresis is the simultaneous determination of the metals, with equal response factors. An example is given of the determination of metals, including aluminium, in serum.  相似文献   

11.
Polyaniline(PANI)/Tin oxide (SnO2) hybrid nanocomposite with a diameter 20–30 nm was prepared by co-precipitation process of SnO2 through in situ chemical polymerization of aniline using ammonium persulphate as an oxidizing agent. The resulting nanocomposite material was characterized by different techniques, such as X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared spectroscopy (FT-IR) and Ultraviolet–Visible spectroscopy (UV–Vis), which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the nanocomposite materials and the distribution of the metal particles in the nanocomposite material. SEM observation showed that the prepared SnO2 nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer nanocomposite material. UV–Vis absorption spectra of PANI/SnO2 nanocomposites were studied to explore the optical behavior after doping of nanoparticles into PANI matrix. The incorporation of SnO2 nanoparticles gives rise to the red shift of π–π1 transition of polyaniline. Thermal stability of PANI and PANI/SnO2 nanocomposite was investigated by thermogravimetric analysis (TGA). PANI/SnO2 nanocomposite observed maximum conductivity (6.4 × 10?3 scm?1) was found 9 wt% loading of PANI in SnO2.  相似文献   

12.
This paper investigates the possibility of improving the mechanical and thermal properties of epoxy and unsaturated polyester toughened epoxy resins through the dispersion of octadecyl ammonium ion-exchanged montmorillonite (organoclay) through exfoliated mechanism. The nanocomposites prepared are characterized for their structural change and studied for their crystallite size, mechanical, thermal and water absorption (hydrophilicity) properties. The mechanical data indicates significant improvement in the flexural and tensile properties over the neat epoxy and UP-epoxy matrix according to the percentage content of organoclay. The thermal behavior too shows noticeable enhancement in glass transition temperature T g and high thermal stability. Hydrophilicity of all the composites decreases irrespective of the concentration of organoclay on the epoxy and UP-epoxy matrices. The homogeneous morphology of epoxy and UP toughened epoxy nanocomposite hybrid systems is ascertained using scanning electron microscope (SEM). X-ray results point out that the cetyl ammonium modified clay filled composites exhibited the exfoliated structure.  相似文献   

13.
Functionalized Polyvinyl alcohol/sodium alginate (PVA/SA) beads were synthesized via blending Polyvinyl alcohol (PVA) with sodium alginate (SA) and the glutaraldehyde was used as a cross-linking agent. The zeolite nanoparticles (Zeo NPs) incorporated PVA/SA resulting Zeo/PVA/SA nanocomposite (NC) beads were synthesized for removal of some heavy metal from wastewater. The synthesizes beads were characterized via Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size analyzer (PSA), and scanning electron microscope (SEM). The adsorption kinetics of the selected metal ions onto Zeo/PVA/SA NC beads followed the pseudo-first-order model (PFO) and the adsorption isotherm model was well fitted by the Langmuir model. Moreover, the thermodynamic studies were also examined; the outcomes showed that the adsorption mechanisms of the selective metal ions were endothermic, the chemical in nature, spontaneous adsorption on the surface of the Zeo/PVA/SA NC beads. The removal efficiency using Zeo/PVA/SA NC modified beads reached maximum at the pH value of 6.0 for Pb2+, Cd2+, Sr2+, Cu2+, Zn2+, Ni2+, Mn2+ and Li2+ with 99.5, 99.2, 98.8, 97.2, 95.6, 93.1, 92.4 and 74.5%, respectively, while the highest removal are achieved at pH = 5 for Fe3+ and Al3+ with 96.5 and 94.9%, respectively and decreased at lower or higher pH values. The survival count (%) of the E. coli cells were 34% on the SA beads, 11% on the PVA/SA, and 1% on the Zeo/PVA/SA NC modified beads, after 120 min exposure at 25 °C. Reusability experimental displays that the synthesized beads preserved a significant decrease in the sorption capacity after 10 repeating cycles. The Zeo/PVA/SA NC beads were able to eliminate 60–99.8% of Al3+, Fe3+, Cr3+, Co2+, Cd2+, Zn2+, Mn2+, Ni2+, Cu2+, Li2+, Sr2+, Si2+, V2+, and Pb2+ ions from the natural wastewater samples collected from 10th Ramadan City, Cairo, Egypt.  相似文献   

14.
In this paper, we used low-field nuclear magnetic resonance (NMR) relaxometry and X-ray diffraction techniques to characterize polypropylene and to probe the polypropylene/clay interactions in non-exfoliated and exfoliated polypropylene–clay nanocomposites. Differences in T1H longitudinal relaxation time data and X-ray diffraction spectra were correlated with the presence of different domains in the samples studied. The results demonstrated the potential of H NMR relaxometry as a tool in the characterization of polymer–clay nanocomposites.  相似文献   

15.
We report on the optical properties of the heavy fermion superconductor UBe13 from 0.050 to 2eV. The reflectance shows sharp structure at low frequencies superimposed on a smooth decrease down to 50% at 1.6eV. The ThBe13 compound is shown for comparison as a non-heavy fermion system. Kramers-Kronig analysis of reflectance measurements yields sharp interband structure in UBe13 in the 0.1 eV region. In the far IR, above 100 K, the material shows normal Drude behavior: the optical conductivity agrees well with the d.c. conductivity.  相似文献   

16.
Studies of heavy lanthanide chlorides may provide important information on the degree of Ln3+–ligand bond covalency. Monocrystals of LnCl3·6H2O, where Ln = Dy, Ho and Er, were grown and spectroscopic investigations were performed at room temperature and at low temperatures down to 4.2 K in order to understand the nature of the Ln3+–L bonds. The intensities of the electronic lines and the Judd–Ofelt parameters were calculated and compared with those obtained for chlorides of light lanthanides (i.e. Ce(III), Pr(III) and Nd(III)). Room temperature Raman and IR studies of the compounds under investigation were also performed. The relationship between hypersensitivity and covalency is discussed. The change of vibronic coupling strength along the lanthanide ion series does not modify monotonically. The ion-pair interactions are especially visible for the 5I8 → 5F2 and 5I8 → 5F3 transitions in the HoCl3·6H2O low temperature spectra.  相似文献   

17.
Research on Chemical Intermediates - A magnetic solid phase extraction method is presented to preconcentrate Pb(II), Cd(II), Ni(II) and Zn(II) simultaneously. The adsorbent (mMoS2-CS), consisting...  相似文献   

18.
《Arabian Journal of Chemistry》2020,13(11):7695-7706
A batch adsorption experiments were carried out to study the role of nanoparticles and nanocomposite on removal of some heavy metals and fungicides from aqueous solution. Nano-Hydroxyapatite (n-HAP), Nano-Bentonite (n-Bo) and Bentonite-hydroxyapatite nanocomposite (B-HAP NC) evaluated for the removal of some heavy metals and fungicides. The nanoparticles and nanocomposite were characterized by TEM, SEM and AFM, X-ray powder diffraction (XRD) and BET surface area. The batch adsorption was done using nanoparticles with Pb2+ and Ni2+ as example of heavy metals with concentrations up to 25 mgL−1. Also, the adsorption experiment was conducted using nano-particles (n-HAP, n-Bo and B-HAP NC) with fungicides Stop Feng and Eurozole with concentrations 20 to 200 μg L−1. Langmuir and Freundlich isotherm equations were employed to study the adsorption. The adsorption kinetics were conducted metal ion (Pb2+ and Ni2+) with residence time. The results indicated the maximum adsorption capacity of Ni+2 was occurred on (n-HAP). While that maximum adsorption capacity of Pb2+ was occurred on (B-HAP NC). The rate of Ni+2 removal was found to be very rapid during the initial 60 min. The adsorption of Pb+2 by the n-HAP and (B-HAP NC) was a slow increase with time, it did not bring any remarkable effect. Also, the efficiency of adsorbent compounds used to remove the residue of fungicides Stop Feng and Eurozole shown the highest removal rates obtained with used nano-hydroxyapatite followed by bentonite-hydroxyapatitenanocomposite and nano-bentonite, respectively. The current results are very useful in the treatment of wastewater and the removal of heavy metals and fungicides, consequently making them suitable for agricultural purposes.  相似文献   

19.
In this study, a HAp/NaP nanocomposite was prepared by adding a synthesized nano-hydroxyapatite to zeolite NaP gel in the hydrothermal condition and used for the removal of lead(II) and cadmium(II) ions from aqueous solution. HAp/zeolite nanocomposite was then characterized by Fourier transform infrared spectroscopy, X-ray diffraction and Rietveld method, scanning electron microscope, energy-dispersive X-ray analysis, and surface area and thermal analyses. Results suggested that the nanocomposite crystals of HAp were dispersed onto the zeolite external surface and/or encapsulated within the zeolite channels and pores. The potential of the composite in adsorption of heavy metals was investigated by using batch experiment. The metal concentration in the equilibrium C e (mg/g) after adsorption with nanocomposite of HAp/NaP was analyzed using flame atomic adsorption spectrometry. The adsorption experiments were carried out at pH of 3–9. The influences of contact time, initial concentration, dose, and temperature on the adsorption of lead and cadmium ions were also studied. Results show that these nanocomposites have further adsorption related to NaP and HAp. They have great potential (about 95 %) for Pb(II) and Cd(II) adsorption at room temperature. The equilibrium process was described by Frendlich, Langmuir, Temkin, and Dubinin–Radushkevich (D-R) models. The kinetics data were successfully fitted by a pseudo-second-order model. The in vitro antibacterial activity of these composites was evaluated against Bacillus subtilis (as Gram-positive bacteria) and Pseudomonas aeruginosa (as Gram-negative bacteria) and compared with standard drugs that show inhibition on bacterial growth.  相似文献   

20.
Abstract

In the present work, a novel composite consisting of magnetite, activated carbon from spent coffee grounds and natural clay (MACCC) was prepared by a one-pot synthesis method via a simultaneous activation and magnetization processes. Various techniques (XRD, FTIR, SEM, TEM, EDX, BET) were utilized to characterize the synthesized composite before utilizing it as an adsorbent for removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions. Conditions for removal of heavy metals were thoroughly optimized as 25?°C, pH of 5.5, adsorbent dosage of 2?g L?1, and a contact time of 60?min. Three models of pseudo first-, second-order and intraparticle diffusion as well as three models of Langmuir, Freundlich, and Temkin were used to analyze kinetics and isotherms of the adsorption process. Thermodynamics was discussed completely. Regeneration and recyclability of the adsorbent were also evaluated. Based on the analysis of experimental results, a possible adsorption mechanism of heavy metals onto the synthesized composite was proposed. The maximum capacities caculated from Langmuir model followed the order of Pb(II) > Cu(II) > Ni(II) as 143.56, 96.16 and 84.86?mg·g?1, respectively. The overall results indicated that MACCC is a potential adsorbent for removal of toxic Pb(II), Cu(II) and Ni(II) ions from wastewater due to simple preparation, high removal efficiency and good recyclability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号