首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
超氧化物歧化酶模型化合物的合成, 表征和活性测定   总被引:7,自引:2,他引:7  
合成了二(2-苯并咪唑亚甲基)胺(N3)及其四种全新的过渡金属的双核配合物。通过元素分析、红外光谱和紫外光谱对配体及配合物进行了结构表征,利用邻苯三酚自氧化法测定了四种模拟化合物催化超氧阴离子自由基歧化反应的活性。  相似文献   

2.
Herein, we discuss the synthesis as well as material and photochemical characterization of nanometer‐sized Ta2O5 decorated, in a controlled fashion, on top of 20 nm diameter SiO2 particles to yield a composite oxide with a tunable band‐gap width. Particular emphasis is paid to control of particle size, and control of the distribution of the overlying oxide. The nanoscale dimension imparts a high surface area and introduces quantum confinement effects that displace the conduction band more negatively and the valence band more positively on the electrochemical scale of potentials. This band shift results in an increase of the number of possible participants in photocatalytic reactions. The band shift is shown to result in an increase in driving force for thermodynamically feasible reactions. By decorating SiO2 with smaller‐sized Ta2O5, the interplay of the Lewis acidity of SiO2 and the contact area between Ta2O5 and SiO2 is utilized to develop a photocatalyst with higher photoactivity than pure Ta2O5.  相似文献   

3.
A new oxidovanadium(IV) Schiff base complex, VOL2 (1), containing furfuryl pendant group was synthesized by the reaction of the related bidentate O, N-type Schiff base ligand and VO(acac)2 in the ratio of 2:1 in methanol in the reflux conditions. The Schiff base ligand and its vanadyl complex were characterized by 1H-NMR and FT-IR spectra and elemental analysis. The crystal structure of 1 was also determined the single-crystal X-ray analysis. It showed that the metal center located in a distorted tetragonal pyramidal (N2O3) geometry in which the two bidentate Schiff base ligands were coordinated to the vanadium(IV) ion in four equatorial positions, and one oxygen atom in its axial position. The catalytic activity of the vanadyl Schiff base complex was elucidated in the epoxidation of cyclooctene as a model substrate. Different reaction parameters were investigated in this reaction and the results showed that it was an effective and selective catalyst in these optimal conditions. Thermogravimetric analysis of 1 showed that it was decomposed in two stages by losing two methoxy groups and other organic residuals, respectively, in the temperature range of 253–532 °C. In addition, the vanadyl Schiff base complex (1) was thermally decomposed in air at 660 °C and the XRD pattern of the obtained solid showed the formation of the V2O5 nano-particles with the average size of 52 nm.  相似文献   

4.
The synthesis and structural characterization of a novel oxoperoxovanadium(V) complex [VO(O(2))(PAH)(phen)] containing the ligands 2-phenylacetohydroxamic acid (PAHH) and 1,10-phenanthroline (phen) has been accomplished. The oxoperoxovanadium(V) complex was found to mimic both vanadate-dependent haloperoxidase (VHPO) activity as well as nuclease activity through effective interaction with DNA. The complex is the first example of a structurally characterized stable oxoperoxovanadium(V) complex with a coordinated bi-dentate hydroximate moiety (-CONHO(-)) from 2-phenylacetohydroximate (PAH). The oxoperoxovanadium(V) complex has been used as catalyst for the peroxidative bromination reaction of some unsaturated alcohols (e.g. 4-pentene-1-ol, 1-octene-3-ol and 9-decene-1-ol) in the presence of H(2)O(2) and KBr. The catalytic products have been characterized by GC-MS analysis and spectrophotometric methods. The DNA binding of this complex has been established with CT DNA whereas the DNA cleavage was demonstrated with plasmid DNA. The interactions of the complex with DNA have been monitored by electronic absorption and fluorescence emission spectroscopy. Viscometric measurements suggest that the compound is a DNA intercalator. The nuclease activity of this complex was confirmed by gel electrophoresis studies.  相似文献   

5.
Rose-like crystalline particles of ammonium vanadium sulfate hydroxide (NH4V3(OH)6(SO4)2) were synthesized by a solvothermal route using dimethyl sulfoxide (DMSO)–water as the solvent. Following a thermal decomposition process, rose-like V2O5 micro-architectures were fabricated via the in situ generated single-crystalline nanoparticles. When used as the cathode material in lithium-ion batteries, the rose-like V2O5 micro-architecture exhibited high initial discharge capacity. Sphere-like precursor was also prepared via selecting suitable carboxylic acid. This facile synthesis method would be used to prepare various vanadium oxides with different morphologies as well as other compounds.  相似文献   

6.
《Comptes Rendus Chimie》2014,17(4):352-358
Using solid complex molecular precursor [bis(salicylaldehyde)ethylenediiminecobalt(II)], [Co(salen)], a simple and surfactant-free method to synthesize Co3O4 nanoparticles was proposed. Cubic-phase Co3O4 nanoparticles of size 30–50-nm could be produced by thermal treatment of the Co(salen) in the air at 500 °C for 5 h. The as-prepared samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical absorption spectrum indicates that the direct band gaps of Co3O4 nanoparticles are 1.53 and 2.02 eV. The optical property test indicates that the absorption peak of the nanoparticles shifts towards short wavelengths, and the blue shift phenomenon might be ascribed to the quantum effect. The hysteresis loops of the obtained samples reveal their ferromagnetic behavior, an enhanced coercivity (Hc) and a decreased saturation magnetization (Ms) as compared to their respective bulk materials.  相似文献   

7.
In the present work nano crystalline copper aluminate (CuAl2O4) has been synthesized by the Pechini method using aqueous solutions containing corresponding metal nitrates. A Taguchi L4 statistical design was employed for investigating the most effective factors on the synthesis conditions and their interactions and production optimization. Nano crystalline CuAl2O4 particles with crystal size between 17 and 26 nm were obtained. The product characterized by XRD, FT-IR, DLS and TGA. The morphological properties have investigated using SEM. The photocatalytic degradation was investigated using methyl orange under the irradiation of visible light.  相似文献   

8.
TiO2 and Sn/Cu-TiO2 nanoparticles with different Sn/Cu contents have been synthesized and characterized by different analysis methods such as XRD, TEM, and BET. Sn/Cu-TiO2 was preferential to TiO2 with 2,5-fold increase in photodegradation rate of different types of dyes such as methyl orange, methylene blue and methyl red. This activity was relevant to the influences of co-doping on the physicochemical properties and surface interfacial charge transfer mechanisms. An optimum synergetic effect was found for a mass ratio of Sn/TiO2 equal to 0.75% and Cu/TiO2 equal to 0.5%. The degradation reaction fit well to a Langmuir-Hinshelwood kinetic model indicating the reaction rate is depended on initial adsorption step.  相似文献   

9.
Without any surfactant, antiferromagnetic Co3O4 nanoparticles were synthesized successfully for the first time by means of an oxidation-reduction method with cobalt sulfate as starting material, which was oxidized to cobalt salt by NaNO3 after alkalinizing with NaOH. Morphological, structural, spectroscopic and magnetic characterization of the product were done by SEM, TEM, XRD, and VSM, respectively. The average crystallite size (on the base of line profile fitting method), D and σ, is estimated as 30 ± 6 nm. Some anomalous magnetic properties and their enhanced effect have been observed in Co3O4 antiferromagnetic nanocrystallites, including a bias field, coercivity, permanent magnetic moments and an open loop. These phenomena are attributed to the unidirectional anisotropy which is caused by the exchange coupling between AFM and FM layers, the existence of the spin glass like surface spins of Co3O4 nanoparticles due to size effects and surface-area effect.   相似文献   

10.
Sm2Ti2O5S2 was obtained in an attempt to prepare an oxysulfide of samarium and titanium in a way similar to the obtention of the quaternary Sm3NbO4Se3 compound. The structure was determined by single-crystal X-ray diffraction. The following crystal data were obtained: Mr = 540.6 g mol−1, tetragonal symmetry with unit cell parameters a = 3.819(1) A, c = 22.964(5) A, space group I4/mmm (139). Refinement for 127 unique reflections with I > 3σ(1), and 11 variables, converged to the reliability factor R = 1.77 %. The structure can be described as a stacking, along the c-direction, of [Sm2S2] slabs of a rock-salt type (two-atom-thick-layers) separated by a 2D network of corner-sharing octahedra [= Ti2O5] of a ReO3 structure type.  相似文献   

11.
Temperature-programmed reductions (TPR) with H2 of both pure V2O5 and coprecipitated V2O5?TiO2 systems with different titanium concentrations was performed. The original and the reduced samples following each TPR step were characterized by X-ray diffraction, Fourier transform infrared analysis and scanning electron microscopy. Within the temperature range in which TPR analysis was carried out (100–600°C) the V2O5 phase was reduced in two or three steps, while no variation in the TiO2 phase (anatase or rutile) was observed. In the first reduction step only superficial reduction of the oxides was detected. In the following steps, the H2 reacted with oxygen atoms of the V=O and V?O?V bonds. This led to important changes in the structure and morphology of the system. The experimental evidence allowed the conclusion that titanium stabilizes certain phases of vanadium oxides in which vanadium appears as V(+4) or as a mixture of V(+4) and V(+5). Moreover, when moderate and high titanium concentrations were used, the reduction temperature of the bulk V2O5 decreased markedly.  相似文献   

12.
Synthesis and optical properties of V2O5 nanorods   总被引:1,自引:0,他引:1  
A two-step method was proposed in synthesizing V2O5 nanorods on planar substrates, i.e., depositing a V2O3 thin film at approximately 220 degrees C (by heating a pure sheet of vanadium in a rough vacuum) and then heating it in air at approximately 400 degrees C. The V2O5 nanorods produced by this technique are single crystalline and could emit intense visible light at room temperature, possibly due to some defects such as oxygen vacancies which got involved during growth. This study provides a simple and low-substrate-temperature route in fabricating V2O5 nanorods on planar substrates, which might be also applicable to other metal oxides.  相似文献   

13.
A new nanocomposite of vanadium pentoxide (V2O5) and polyaniline (PANI) were synthesized by in situ oxidative polymerization/intercalation on V2O5 powder at room temperature. The reaction was facile and topotactic, forming polyaniline as the emeraldine salt. It was indicated that V2O5 itself can catalyze the oxidative polymerization of aniline and that layered structure could make aniline intercalate into the V2O5 framework. It makes the in situ polymerization feasible to occur in the layer of V2O5 structure. XRD results showed PANI/V2O5 nanocomposite possessed lamellar mesostructure, which was determined by an X-ray diffraction peak at 6.5° and SEM photograph. And FT-IR spectrum suggested that there was interaction between PANI and V2O5. The hybrid had better thermal stability in N2 and air ambience.  相似文献   

14.
Chen XL  Li DH  Yang HH  Zhu QZ  Zheng H  Xu JG 《The Analyst》2001,126(4):523-527
A new red-region fluorogenic substrate, tetra-substituted amino aluminium pthalocyanine, was developed for the selective determination of H2O2 based on the catalytic effect of mimetic peroxidases, viz., hemin or iron tetrasulfonatophthalocyanine (FeTSPc). Under the optimum conditions, the linearity of the calibration graph for the determination of H2O2 with hemin (or FeTSPc) as the catalyst was in the range from 0.0 to 3.0 x 10(-7) mol L-1 (or from 0.0 to 2.0 x 10(-6) mol L-1). The detection limits were 3.7 x 10(-9) and 4.9 x 10(-9) mol L-1 H2O2, respectively. The relative standard deviation (n = 7) was within 1.5% in the middle of the linear range. The peroxidase activity of the mimetic enzymes hemin and FeTSPc, the effects of some experimental conditions and the influence of foreign substances were investigated. With this substrate, 0.0-7.5 x 10(-8) mol L-1 hemin and 0.0-2.0 x 10(-6) mol L-1 FeTSPc can be determined with an accuracy and precision of about 1.3%. The potential application of the reagent was tested by the determination of H2O2 in rainwater.  相似文献   

15.
A novel kind of fluorescent nanoparticles(FNPs)has been prepared using a precipitation polymerization method.Methacrylic acid,trimethylolpropane trimethacrylate and azobisisobutyronitrile were used as functional-monomer,cross-linker and initiator, respectively.Compared with other fluorescent nanoparticles,the FNPs have the characteristics including low dye leakage and good photostability.The fluorescence microscopy imaging indicates that the FNPs can be used as fluorescent labels in bioanalysis.  相似文献   

16.
Nitrogen-doped CeO2 nanoparticles were synthesized through a wet-chemical route. Nitrogen has been successfully incorporated into CeO2 nanoparticles and the nitrogen-doping level was also successfully controlled. The optical properties due to the different N-doping levels in CeO2 nanoparticles were characterized by UV-Vis diffuse reflectance spectroscopy (DRS), which showed a visible-light absorbance shift. The resulting nanoparticles show enhanced visible-light sensitivity and photocatalytic activity compared to undoped CeO2 nanoparticles. DFT calculations were performed to explore the effect of nitrogen doping versus oxygen vacancies. The calculations show that the change of the electronic structure upon N-doping CeO2 is quite different from that of N-doped TiO2, which has been studied extensively.  相似文献   

17.
The IR spectrum of V4Nb18O55 has been compared with the IR spectra of selected niobates of known structures to show structural relations between these compounds. This comparison shows that V4Nb18O55 has crystal structure related to T-Nb2O5, W16Nb18O94 and Ba2NaNb5O15. On the other hand, reaction between V2O5 and H-Nb2O5 yields a solid solution of V2O5 in VNb9O25. It has been proposed two models of synthesized solid solution with formulas V1+xNb9-xO25 or V1+xNb9O25+5x/2.Independently of Nb2O5 polymorph, used for synthesis, the metastable compound VNbO5 cannot be synthesized in the solid state below 650°C   相似文献   

18.
Iridium nanoparticles (IrNPs) with intrinsic oxidase-like activity were synthesized by using sodium citrate as the stabilizer and NaBH4 as the reducing agent. The IrNPs have an average diameter of 2.5 ± 0.5 nm and exhibit excellent oxidase-like property. Under the catalytic action of the IrNPs, 3,3′,5,5′-tetramethylbenzidine (TMB) is oxidized by dissolved oxygen (DO) to form a blue product with an absorption maximum at 652 nm. The catalytic activity is ascribed to the production of superoxide anion radical (O2ˉ?). The chromogenic reaction is exploited for the determination of DO. The method exhibits a wide calibration range from 12.5 to 257.5 μM of DO and a limit of detection as low as 4.7 μM. Compared to other methods, this method presented here shows improved precision and faster response time.
Graphic abstract Iridium nanoparticles (IrNPs) stabilized by sodium citrate exhibit oxidase-like activity and can effectively catalyze dissolved oxygen (DO) by oxidizing 3,3′,5,5′-tetramethylbenzidine (TMB) to form a blue product.
  相似文献   

19.
Intermetallic PtPb nanoparticles have been synthesized by two solution-phase reduction methods. In the first (PtPb-B), Pt and Pb salts were reduced by sodium borohydride in methanol at room temperature. In the second (PtPb-N), metal-organic Pt and Pb precursors were reduced by sodium naphthalide in diglyme at 135 degrees C. Both methods produced small agglomerated nanoparticles of the ordered intermetallic PtPb (mean crystal domain size <15 nm) which were characterized by pXRD, SEM, UHV-STEM, BET, EDX, and electron diffraction. The electrocatalytic activity of PtPb nanoparticles produced by both methods toward formic acid and methanol oxidation was investigated and compared to Pt and PtRu. Both PtPb-B and PtPb-N nanoparticles exhibited enhanced electrocatalytic activity compared to commercially available Pt black and PtRu nanoparticles. For formic acid oxidation, the PtPb nanoparticles exhibited considerably lower onset potentials and higher current densities than Pt or PtRu. For methanol oxidation, the PtPb nanoparticles had onset potentials slightly positive of PtRu but exhibited higher current densities at potentials about 100 mV positive of onset. The general applicability of these methods for the synthesis of nanoparticles of ordered intermetallic phases is discussed.  相似文献   

20.
A simple spectrophotometric assay of H2O2 and glucose using Ag nanoparticles has been carried out. Relying on the synergistic effect of H2O2 reduction and ultraviolet (UV) irradiation, Ag nanoparticles with enhanced absorption signals were synthesized. H2O2 served as a reducing agent in the Ag nanoparticles formation in which Ag+ was reduced to Ago by O2- generated via the decomposition of H2O2 in alkaline media. On the other hand, photoreduction of Ag+ to Ago under UV irradiations also contributed to the nanoparticles formation. The synthesized nanoparticles were characterized by TEM, XPS, and XRD. The proposed method could determine H2O2 with concentrations ranging from 5.0× 10^-7 to 6.0× 10^-5 tool/ L The detection limit was estimated to be 2.0 × 10^-7 mol/L. Since the conversion of glucose to gluconic acid catalyzed by glucose oxidase was companied with the formation of H2O2, the sensing protocol has been successfully utilized for the determination of glucose in human blood samples. The results were in good agreement with those determined by a local hospital. This colorimetric sensor thus holds great promises in clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号