首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The temperature dependence of the heat capacity of LiZr2(PO4)3 crystal phosphate is studied in an adiabatic vacuum calorimeter in the temperature range of 6 to 358 K. A phase transition caused by the transition of a low-temperature (triclinic) modification to a high-temperature (rhombohedral) modification is observed in the temperature range of 290–338 K and its standard thermodynamic characteristics are estimated and analyzed. Standard thermodynamic functions are calculated from experimental data: heat capacity, enthalpy, entropy, and Gibbs function in the range of T → 0 to 358 K. Fractal dimensionality D is calculated from the data on low-temperature (20 K ≤ T ≤ 50 K) heat capacity and the topology of the phosphate’s structure is estimated.  相似文献   

2.
Crystals of sodium zinc diiron(III) triphosphate, NaZnFe2(PO4)3, have been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The compound features a new structural type built up from ZnO6 octahedra, FeO6 octahedra and FeO4 tetrahedra, linked together via the corners and edges of PO4 tetrahedra to form a three‐dimensional framework, with tunnels running along [100]. Within these tunnels, Na+ cations occupy a highly distorted cubic site.  相似文献   

3.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

4.
A new zero-dimensional (0D) aluminophosphate monomer [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en)3Cl3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO4)2(H1.5PO4)2(H2PO4)2]6? monomer. Notably, there exists intramolecular symmetrical O?H?O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4, M = 1476.33, monoclinic, C2/c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å3, Z = 4, R1 = 0.0509 (I > 2σ(I)) and wR2 = 0.1074 (all data). CCDC number 689491.  相似文献   

5.
6.
An efficient, facile, simple, and green synthetic protocol for the Biginelli reaction has been developed for the preparation of 3,4-dihydropyrimidin-2(1H)-thione derivatives under thermal and microwave irradiation, solvent-free conditions, in the presence of aluminum hydrogen phosphate, Al(H2PO4)3, as an environmentally friendly heterogeneous recyclable catalyst, in high to excellent yields and short reaction time. In addition, the catalyst could be easily recovered from the reaction mixture by simple filtration and reused several times without any loss of activity.  相似文献   

7.
The non-centrosymmetric microporous fluorinated iron phosphate, (H3O)2[Fe4(H2O)2F4(PO4)2(HPO4)2](H2O), is endowed with properties. In fact, the thermogravimetric analysis study shows a mass loss evolution as a temperature function. The optical study was also examined by UV–vis absorption. The magnetic results reveal the appearance of a ferromagnetic behavior at low temperature (Tc = 11.64 K).  相似文献   

8.
9.
Sintered hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) are the two most common bio-ceramics for bone substitute. Although their composition are analogous to the constituent of human hard tissue, but some disadvantages are always exist till now, such as they need a high temperature sintering process, and this would lose the functional groups for bioactivity and closed the micro- pores without any interconnections, that hamper the body fluid transportation and angiogenesis during regeneration. Furthermore, the sintered ceramics with block and fixed size is difficult to fit non-regular defect area. In this study, the mixtures of Ca(H2PO4)2·H2O and CaCO3 were adjusted firstly, then distilled water were introduced in wet chemical method, and a biphasic ceramic of HAp/β-TCP will be obtained after drying and sintering, then the result product that prepared by wet chemical method will be the sample in this investigation. The physical properties of result powders were characterized by DTA/TG, XRD and SEM, respectively, the particle size of two bio-ceramics that after heat treatment were found under 5 μm in SEM examination. Powder type calcium phosphate ceramics with the Ca/P molar ratio of 1.67 can be as bone cement by mixing with polymeric binder, the fine particle product of the setting cement will possess micro-pores and macro-pores that after suitable heat treatment process, and this is good for fluid transportation and tissue regeneration.  相似文献   

10.
11.
Under mild hydrothermal conditions, a new organically templated uranyl zinc phosphate, [H 2bipy] 2[(UO 2) 6Zn 2(PO 3OH) 4(PO 4) 4].H 2O ( UZnP-2), has been synthesized. Structural analysis reveals that UZnP-2 is constructed from UO 7 pentagonal bipyramids that are linked into edge-sharing dimers that are in turn joined together by ZnO 4 and PO 4 tetrahedra to form a three-dimensional network. Intersecting channels occur along the a, b, and c axes. These channels house the diprotonated 4,4'-bipyridyl cations and water molecules. Ion-exchange experiments demonstrate that replacement of the 4,4'-bipyridyl cations by alkali and alkaline-earth metal cations results in a rearrangement of the framework. Further characterization of UZnP-2 is provided by Raman and fluorescence spectroscopy. The latter method reveals strong emission from the uranyl moieties with characteristic fine structure.  相似文献   

12.
FT IR and FT Raman spectra of Ag3(PO2NH), (Compound 1), Na3(PO2NH)3 x H2O (Compound II), Na3(PO2NH)3 x 4H2O (Compound III), [C(NH2)3]3(PO2NH)3 x H2O (Compound IV) and (NH4)4(PO2NH)4 x 4H2O (Compound V) are recorded and analyzed on the basis of the anions, cations and water molecules present in each of them. The PO2NH- anion ring in compound I is distorted due to the influence of Ag+ cation. Wide variation in the hydrogen bond lengths in compound III is indicated by the splitting of the v2 and v3 modes of vibration of water molecules. The NH4 ion in compound V occupies lower site symmetry and exhibits hindered rotation in the lattice. The correlations between the symmetric and asymmetric stretching vibrations of P-N-P bridge and the P-N-P bond angle have also been discussed.  相似文献   

13.
14.
The structures of tripotassium digallium tris(phosphate), K3Ga2(PO4)3, and trisodium gallium bis(phosphate), Na3Ga(PO4)2, have different irregular one‐dimensional alkali ion‐containing channels along the a axis of the orthorhombic and triclinic unit cells, respectively. The anionic subsystems consist of vortex‐linked PO4 tetrahedra and GaO4 tetrahedra or GaO5 trigonal bipyramids in the first and second structure, respectively.  相似文献   

15.
16.
以有机分子乙二胺作为模板剂合成了新型磷酸钒孔道化合物(H3NCH2CH2NH3)3^-[(VO)4(PO4)2(HPO4)4,并通过X射线单晶衍射实验进行了结构表征,晶体学数据为:C2/c,a=1.8505(9)nm,b=0.7089(4)nm,c=2.3304(10)nm,β=96.43(3)°,V-3.038(3)nm^3,Z=8,R=0.067,Rw^b=0.1635,该化合物具有非常独特和规整的二维孔道骨架结构,进一步的晶体化学研究表明该化合物为一新的VPO物相。  相似文献   

17.
A new layered compound, K4Mn3(HPO4)4(H2PO4)2 (1), has been synthesized under hydrothermal conditions. It crystallizes in the monoclinic space group P21/n with a = 8.874(2) Å, b = 6.554(1) Å, c = 18.075(4) Å, and β = 93.39(3)°. The structure consists of zigzag [Mn3O14]n chains of edge-sharing MnO6 octahedrons and MnO7 pentagonal bi-pyramids, which form layers of formula [Mn3(HPO4)4(H2PO4)2]4? in the ab plane via H2PO4 and HPO4 units with vertex-sharing. Potassium ions lie between these layers. Magnetic measurements indicate Curie–Weiss behavior above 6 K for 1. A Heisenberg model, with alternating exchange interactions J1J1J2… within the chain and exchange interactions J3J3… between the chains, is proposed to describe the magnetic behavior.  相似文献   

18.
Single crystals of the solid solution iron aluminium tris(dihydrogenphosphate), (Fe0.81Al0.19)(H2PO4)3, have been prepared under hydrothermal conditions. The compound is a new monoclinic variety (γ‐form) of iron aluminium phosphate (Fe,Al)(H2PO4)3. The structure is based on a two‐dimensional framework of distorted corner‐sharing MO6 (M = Fe, Al) polyhedra sharing corners with PO4 tetrahedra. Strong hydrogen bonds between the OH groups of the H2PO4 tetrahedra and the O atoms help to consolidate the crystal structure.  相似文献   

19.
20.
Journal of Thermal Analysis and Calorimetry - The molar heat capacities of one–three-dimensional metal–organic frameworks Al4(OH)2(OCH3)4(H2N-BDC)3 (CAU-1) were measured by...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号