共查询到20条相似文献,搜索用时 15 毫秒
1.
O/CO气氛下CO和HO气化反应对煤及煤焦燃烧特性的影响 《燃料化学学报》2015,43(12):1420-1426
利用热天平对比研究了大同煤及煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧行为,探讨CO2和H2O气化反应对其富氧燃烧特性的影响。结果表明,在5%氧气浓度下,煤粉在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧速率按顺序依次降低。氧气浓度降低到2%,由于CO2和H2O气化反应的作用,煤粉在高温区的整体反应速率按顺序依次增大。当氧气浓度为5%时,煤焦在O2/CO2中的燃烧速率要低于O2/N2中的燃烧速率,但燃烧反应推迟后气化反应的参与使得煤焦在O2/H2O/CO2中的整体反应速率显著升高。当氧气浓度降低到2%后,随着温度的升高,在CO2气化反应的作用下,煤焦在O2/CO2中的整体反应速率逐渐高于O2/N2中的燃烧速率。在O2/H2O/CO2中,由于H2O在共气化中起主要作用,煤焦在O2/H2O/CO2高温区的整体反应速率进一步升高。动力学分析表明,在5%氧浓度时,煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的表观活化能依次升高。随着氧气浓度的降低,在不同反应气氛中的表观活化能均有所下降。 相似文献
2.
O2/CO2煤粉燃烧时含铁矿物质转化行为的实验研究 总被引:3,自引:1,他引:3
通过乌兰木伦煤和哈拉沟煤在沉降炉中的燃烧实验,采用57Fe M(o)ssbauer谱仪,对煤中含铁矿物质及其在O2/N2和O2/CO2燃烧条件下生成的灰中含铁成分进行分析和比较,研究了O2/CO2煤粉燃烧时含铁矿物质的转化行为.结果表明,与O2/N2燃烧相比,O2/CO2燃烧对灰中生成的主要含铁矿物相种类没有影响,但显著地改变了灰中含铁矿物相的相对含量;O2/CO2燃烧更有利于内在黄铁矿和菱铁矿生成硅酸盐玻璃体而不是氧化成铁氧化物.灰中含铁矿物相的相对含量变化表明O2/CO2燃烧影响煤的结渣趋势,对于含内在含铁矿物较多的煤,O2/CO2燃烧会增加其结渣的趋势. 相似文献
3.
4.
5.
《Journal of Energy Chemistry》2015,(4)
The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of water-soluble,HCl-soluble,HCl-insoluble AAEMs during Shenmu coal(SM coal) oxy-fuel combustion in the presence of SO2 and H2O in a drop-tube reactor was investigated through serial dissolution using H2O and HCl solutions. The results show that the release rates of AAEMs increase with an increase in temperature under the three atmospheres studied. The high release rates of Mg and Ca from SM coal are dependent on the high content of soluble Mg and Ca in SM coal. SO2 inhibits the release rates of AAEMs,while H2O promotes them. The effects of SO2 and H2O on the Na and K species are more evident than those on Mg and Ca species. All three types of AAEMs in coal can volatilize in the gas phase during coal combustion. The W-type AAEMs release excessively,whereas the release rates of I-type AAEMs are relatively lower. Different types of AAEM may interconvert through different pathways under certain conditions. Both SO2 and H2O promote the transformation reactions. The effect of SO2 was related to sulfate formation and the promotion by H2O occurs because of a decrease in the melting point of the solid as well as the reaction of H2O. 相似文献
6.
高碱煤含钠矿物沉积层的高温熔融及多相反应过程分析 总被引:1,自引:0,他引:1
采用纯矿物试剂模拟燃用高碱煤时炉内受热面典型的灰沉积层化学组成,利用热机械分析(TMA)、TG-DSC分析、高温煅烧实验结合XRD、SEM-EDS表征方法研究了不同Na2SO4含量灰沉积层的高温熔融过程及矿物间的多相反应机理。结果表明,掺混Na2SO4后沉积层熔化特征温度显著降低,Na2SO4的主要反应途径与掺混比例有关,当掺混比低于20%时,Na2SO4与SiO2、CaO、Al2O3反应主要转变为CaSO4和钠的硅铝酸盐;掺混比大于40%时则主要与CaSO4生成低熔点的钠钙复合硫酸盐。富Na2SO4沉积层颗粒在800℃时开始黏结;900-950℃时,霞石、钠长石等钠的硅铝酸盐发生低温共熔,同时Na2SO4和CaSO4生成的复合硫酸盐开始熔融,逐渐形成液相;1200-1250℃时,镁黄长石与含钙矿物发生强烈共熔,温度超过1300℃后矿物完全熔融成为自由液相。 相似文献
7.
混煤燃烧过程中砷/硒与飞灰中矿物质之间的高温原位反应 《燃料化学学报》2003,48(11):1356-1364
为了研究混煤燃烧过程中痕量元素与飞灰中矿物质的原位反应,选取烟煤(HLH)、无烟煤(ZW)及其混煤在1150 ℃时的沉降炉中进行燃烧,并分别收集和分析了高温段灰分(HTA)和低温段灰分(LTA)中砷和硒残留率。结果表明,砷在高温段灰分中的残留率低于低温段灰,说明在烟气冷却过程中砷会被灰重新吸附。ZW、Z3H1、Z1H1、Z1H3、HLH的高温段灰中砷的残留率分别为60.31%、26.85%、13.29%、20.23%、36.11%,说明混煤的高温段灰比原煤更难捕获砷。同时,硒在五种煤样的高温段灰中的残留率分别为24.68%、23.60%、20.58%、15.19%和38.13%,其残留规律与砷相同。此外,X射线衍射(XRD)分析结果表明,混煤燃烧过程中矿物形态发生了明显变化。与原煤不同的是,混煤的HTA中出现了莫来石,且莫来石的峰值随着混煤中ZW比例的增加而增强。这与HTA中砷和硒的残留趋势一致。说明在混煤燃烧过程中,矿物质种类的变化以及矿物质与痕量元素的原位反应对砷和硒的排放有显著影响。 相似文献
8.
Explosions occur when O3 and H2CO are mixed in a fresh vessel, even in the presence of several hundred torr of N2 or O2. However, in an aged vessel the reaction is well behaved. The reaction between O3 and H2CO was studied at room temperature in an aged vessel in the presence of about 400 torr of either N2 or O2. The initial rate of O3 decay in the presence of N2 is about 103 times faster than in the presence of O2, and very small amounts of O2 quickly reduce the initial rate of O3 decay in the N2 case. A chain mechanism is postulated to account for the results in which chain initiation can occur both by thermal decomposition of O3, followed by reaction of O(3P) with H2CO to produce HO and HCO, as well as by which may occur both homogeneously and heterogeneously. The rate coefficient k1 ? 2.1 × 10?24 cm3/molec · sec represents an upper limit (to within a factor of 2 uncertainty) to the direct gas-phase reaction between O3 and H2CO. 相似文献
9.
片状煤焦颗粒CO气化过程中形态及结构演变特性研究 《燃料化学学报》2018,46(7):787-795
采用高温热台显微镜观测了片状煤焦颗粒CO2气化过程中的形态演变,并通过拉曼光谱分析了气化半焦的碳微晶结构,同时研究了气化温度(1000-1200℃)和煤焦初始当量直径(1.00-1.60 mm)对其CO2气化过程中的形态及结构演变的影响规律。结果表明,与反应前期相比,反应后期的颗粒收缩(面积、体积、当量直径)更加剧烈。在所研究的气化温度范围内,随着气化温度的升高,煤焦颗粒的面积收缩率和体积收缩率逐渐减小。煤焦初始粒径显著影响颗粒收缩,1100℃气化温度下,颗粒的收缩趋势在初始粒径1.30 mm处出现转折。煤焦气化过程中碳消耗主导着表观密度的变化,在所研究的温度和粒径范围内,当碳转化率达到80%时,表观密度比线性减小到0.4以下。在相同气化温度下,随着碳转化率的增加,煤焦的石墨化程度先减小后增加,无定形碳含量先增加再减小。 相似文献
10.
烟煤焦在HO和CO气氛下的结构演变与气化反应性关联 《燃料化学学报》2019,47(4):393-401
本研究以烟煤在1000 ℃热解所制得的焦样为研究对象,考察了其在H2O、CO2及两者混合气氛下的结构演变,以及气化反应性的影响。为了探究焦样在气化过程中的结构演变,利用氮吸附、SEM和拉曼光谱等表征手段分析不同碳转化率下的焦样结构。结果表明,H2O气氛对焦样结构的演变明显不同于CO2气氛,揭示了焦样在两种气氛下的反应路径不同。因结构演变的不同,随碳转化率的增加,焦样在两种气氛下表现出不同的气化反应性能。在CO2气氛下,焦样的气化反应速率随碳转化率的增加而逐渐降低,与H2O气氛存在下变化趋势相反。在H2O和CO2共气化条件下,煤焦在H2O和CO2混合气氛下的反应速率高于单气氛下的反应速率的计算值,表现出一定的协同作用。这是因为焦样与H2O反应能够产生较大的比表面积,为焦样与CO2反应提供更多的反应场所,促进了焦样与CO2的反应。 相似文献
11.
12.
13.
A generalized single‐particle model for the prediction of combustion dynamics of a porous coal char in a fluidized bed is analyzed in the present work using a volume reaction model (VRM). A fully transient nonisothermal model involving both heterogeneous and homogeneous chemical reactions, multicomponent mass transfer, heat transfer with intraparticle resistances, as well as char structure evolution is developed. The model takes into account convection and diffusion inside the particle pores, as well as in the boundary layer. By addressing the Stefan flow originated due to nonequimolar mass transfer and chemical reactions, this work enables a more realistic analysis of the combustion process. The model, characterized by a set of partial differential equations coupled with nonlinear boundary conditions, is solved numerically using the implicit finite volume method (FVM) with a FORTRAN code developed in‐house. The use of a FVM for solving such an elaborate char combustion model, based on the VRM, was not reported earlier. Experiments consisting of fluidized‐bed combustion of a single char particle were carried out to determine the internal surface area of a partially burned char particle and to enable model validation. Predicted results are found to compare well with the reported experimental results for porous coal char combustion. The effects of various parameters (i.e., bulk temperature and initial particle radius) are examined on the dynamics of combustion of coal char. The phenomena of ignition and extinction are also investigated. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 299–315, 2010 相似文献
14.
15.
16.
17.
Socaciu LD Hagen J Le Roux J Popolan D Bernhardt TM Woste L Vajda S 《The Journal of chemical physics》2004,120(5):2078-2081
Reactions of free silver anions Agn- (n = 1 - 13) with O2, CO, and their mixtures are investigated in a temperature controlled radio frequency ion trap setup. Cluster anions Agn- (n = 1 - 11) readily react with molecular oxygen to yield AgnOm- (m = 2, 4, or 6) oxide products. In contrast, no reaction of the silver cluster anions with carbon monoxide is detected. However, if silver cluster anions are exposed to the mixture of O2 and CO, new reaction products and a pronounced, discontinuous size dependence in the reaction behavior is observed. In particular, coadsorption complexes Agn(CO)O2- are detected for cluster sizes with n = 4 and 6 and, the most striking observation, in the case of the larger odd atom number clusters Ag7-, Ag9-, and Ag11-, the oxide product concentration decreases while a reappearance of the bare metal cluster signal is observed. This leads to the conclusion that carbon monoxide reacts with the activated oxygen on these silver clusters and indicates the prevalence of a catalytic reaction cycle. 相似文献
18.
Aromatic compounds such as toluene and xylene are major components of many fuels. Accurate kinetic mechanisms for the combustion of toluene are, however, incomplete, as they do not accurately model experimental results such as strain rates and ignition times and consistently underpredict conversion. Current kinetic mechanisms for toluene combustion neglect the reactions of the methylphenyl radicals, and we believe that this is responsible, in part, for the shortcomings of these models. We also demonstrate how methylphenyl radical formation is important in the combustion and pyrolysis of other alkyl-substituted aromatic compounds such as xylene and trimethylbenzene. We have studied the oxidation reactions of the methylphenyl radicals with O2 using computational ab initio and density functional theory methods. A detailed reaction submechanism is presented for the 2-methylphenyl radical + O2 system, with 16 intermediates and products. For each species, enthalpies of formation are calculated using the computational methods G3 and G3B3, with isodesmic work reactions used to minimize computational errors. Transition states are calculated at the G3B3 level, yielding high-pressure limit elementary rate constants as a function of temperature. For the barrierless methylphenyl + O2 and methylphenoxy + O association reactions, rate constants are determined from variational transition state theory. Multichannel, multifrequency quantum Rice-Ramsperger-Kassel (qRRK) theory, with master equation analysis for falloff, provides rate constants as a function of temperature and pressure from 800 to 2400 K and 1 x 10(-4) to 1 x 10(3) atm. Analysis of our results shows that the dominant pathways for reaction of the three isomeric methylphenyl radicals is formation of methyloxepinoxy radicals and subsequent ring opening to methyl-dioxo-hexadienyl radicals. The next most important reaction pathway involves formation of methylphenoxy radicals + O in a chain branching process. At lower temperatures, the formation of stabilized methylphenylperoxy radicals becomes significant. A further important reaction channel is available only to the 2-methylphenyl isomer, where 6-methylene-2,4-cyclohexadiene-1-one (ortho-quinone methide, o-QM) is produced via an intramolecular hydrogen transfer from the methyl group to the peroxy radical in 2-methylphenylperoxy, with subsequent loss of OH. The decomposition of o-QM to benzene + CO reveals a potentially important new pathway for the conversion of toluene to benzene during combustion. A number of the important products of toluene combustion proposed in this study are known to be precursors of polyaromatic hydrocarbons that are involved in soot formation. Reactions leading to the important unsaturated oxygenated intermediates identified in this study, and the further reactions of these intermediates, are not included in current aromatic oxidation mechanisms. 相似文献
19.
采用管式炉研究了在O2/CO2气氛下添加高岭石对PM2.5(空气动力学直径小于2.5μm的颗粒物)排放特性的影响。实验采用荷电低压撞击器(ELPI)采集和分析燃烧后的PM2.5。结果表明,添加高岭石是燃烧过程中影响PM2.5生成的重要因素。添加高岭石后,生成PM1的数量和质量浓度均降低,而PM1-2.5的数量和质量浓度均略有增加,PM2.5粒径分布均呈双峰分布,峰值点分别出现在0.2μm和2.0μm左右。随着高岭石添加质量比的增加,PM2.5中的S、Pb、Cu、Na和K五种元素的浓度呈下降趋势。粒径小于0.317μm的亚微米颗粒通过气化-凝结机理形成,而超微米颗粒则是通过亚微米颗粒凝聚、聚结和矿物质熔融、破碎、聚结形成。 相似文献
20.
The observed isotopic effect in CO2 + Hads reaction showed that at 0.05 V the rate determining step is formation whereas at 0.2 V the reorientation of adsorbed intermediate: is probably the slowest step of reaction. The oxidation of adsorbed product is slower in D2SO4 than H2SO4 solution like the surface oxidation of platinum. The rate determining step of COOHads oxidation is a reaction with OHads. 相似文献