首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A latent heat thermal energy storage (LHTES) unit can store a notable amount of heat in a compact volume. However, the charging time could be tediously long due to weak heat transfer. Thus, an improvement of heat transfer and a reduction in charging time is an essential task. The present research aims to improve the thermal charging of a conical shell-tube LHTES unit by optimizing the shell-shape and fin-inclination angle in the presence of nanoadditives. The governing equations for the natural convection heat transfer and phase change heat transfer are written as partial differential equations. The finite element method is applied to solve the equations numerically. The Taguchi optimization approach is then invoked to optimize the fin-inclination angle, shell aspect ratio, and the type and volume fraction of nanoparticles. The results showed that the shell-aspect ratio and fin inclination angle are the most important design parameters influencing the charging time. The charging time could be changed by 40% by variation of design parameters. Interestingly a conical shell with a small radius at the bottom and a large radius at the top (small aspect ratio) is the best shell design. However, a too-small aspect ratio could entrap the liquid-PCM between fins and increase the charging time. An optimum volume fraction of 4% is found for nanoparticle concentration.  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - The main purpose of this research is the numerical modeling of laminar mixed convection heat transfer inside an open square cavity with different heat...  相似文献   

3.

Extended surfaces represent one of practical approaches to enhance heat transfer. Based on the laws of conductive and convective heat transfer, an increase in the area across which the object is in contact with the fluid can increase heat transfer. Due to its special structure, porous media can be seen as suitable alternatives for extended surface applications. On this basis, this research investigates the effect of connection type of sintered porous fins on heat transfer and pressure drop in the fluid flow. Connection model of four- and six-contact sintered balls of constant dimensions was evaluated by means of CFD simulation in this research. To describe the problem further, surface analysis on the reference cube is presented. The results indicate that the six-contact model has more porosity than the four-contact in reference cube by 29.45%. It was further found that the six-contact model tends to increase convective heat transfer by 33%. Results of surface analysis show that the main reasons for the difference in heat transfer between the four- and six-contact models are porosity and the angle at which balls are arranged with another.

  相似文献   

4.

Nanofluids are obtained by suspending metallic or non-metallic nanoparticles in conventional base liquids and can be employed to increase heat transfer rate in various applications. In this study, the effects of adding three types of nanofluids on turbulent convective heat transfer at the entrance region of a constant wall heat flux tube were experimentally studied. The nanofluids were mixtures of aluminium oxide, copper oxide, and silicon carbide at various nanoparticle volume fractions ranging from 0.0002 to 0.002 in water. The convective heat transfer coefficient was measured at different Reynolds numbers of 10,000–50,000. At these concentrations and Reynolds numbers, a maximum of 11–18% of convection heat transfer coefficient was observed as compared to the base fluid, showing a 6–9% increase on average. In this study, it was observed that changes in the nanoparticle type had no considerable effect on heat transfer coefficient increase. According to the model proposed here, the dimensionless thickness of laminar sub-layer is specified as a functional equation of the volume fraction of nanoparticles for each material.

  相似文献   

5.

This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.

  相似文献   

6.
《印度化学会志》2023,100(2):100911
Waste heat recovery is an important alternative to reduce the energy consumption in industrial processes. Heat Exchangers are used effectively for heat recovery. Thus, the role of heat exchangers for waste heat recovery system is crucial. The exclusive of heat transmission of a heat exchanger can be improved by many methods such as by modifying the geometries and using nano-additives of different concentration. In this continuation, a modified geometry of finned heat exchanger is developed with CFD analysis. Modified heat exchanger includes the fins in the internal pipe to improve heat transfer. Nanoparticles of graphene oxide with various concentrations are introduced in working fluid. A steady numerical study is performed by using ANSYS Fluent with k-omega turbulence model for exhaust flow. Variation at inlet velocities of exhaust gas and water, particles concentration and internal fin geometry are considered. The reduction in hot fluid temperature from 6 m/s to 2 m/s enhanced the effectiveness by approximately 33.3%. The decrease in hot fluid velocity to 2 m/s and 6 m/s can reduce its outlet temperature by 100 K and 14 K at 0.03 m/s cold fluid temperature. The inclusion of nanoparticles at 0.1% can enhance the effectiveness by maximum of 7%.  相似文献   

7.
Abstract— To study UV-induced damage and its photorepair in vivo , endonuclease-sensitive sites (ESS) induced by UV irradiation in the DNA of the tail fin of the Medaka, Oryzias latipes . were examined. Isolated fins were irradiated with UV-B, but no ESS were detected after increasing doses of UV-B up to 500 J/m2. Then fins were irradiated with UV-B and fin cells were dissociated by treatment with trypsin and EDTA. Ultraviolet-B-induced ESS were detected in the epithelial cells near the tissue surface but not in the inner cells. The capacity for photo repair of both inner and outer epithelial cells and cells in fin ray was the same and was higher than that for a line of cultured cells, OL32.  相似文献   

8.

High-performance cooling is of vital importance for the cutting-edge technology of today, from nanoelectronic mechanical systems to nuclear reactors. Advances in nanotechnology have allowed the development of a new category of coolants, termed nanofluids that have the potential to enhance the thermal performance of conventional heat transfer fluids. At the present time, nanofluids are a controversial research theme, since there is yet no conclusive answer to explain the underlying physical mechanisms of heat transfer. The current study investigates experimentally the heat and mass transfer behaviour of dilute Al2O3–H2O nanofluids under turbulent natural convection—Rayleigh number of the order of 109—in a cubic Rayleigh–Bénard cell with optical access. Traditional heat transfer measurements were combined with a velocimetry method to obtain a deeper understanding of the impact of nanoparticles on the heat transfer performance of the base fluid. Particle image velocimetry was employed to quantify the resulting mean velocity field and flow structures in dilute nanofluids under natural convection, at three parallel planes inside the cubic cell. All the results were compared with that for the base fluid, i.e. deionised water. It was observed that the presence of a minute amount of Al2O3 nanoparticles in deionised water, φv =?0.00026 vol.%, considerably modifies the mass transfer behaviour of the fluid in the bulk region of turbulent Rayleigh–Bénard convection. Simultaneously, the general heat transport, as expressed by the Nusselt number, remained unaffected within the experimental uncertainty.

  相似文献   

9.
Thermal energy storage units conventionally have the drawback of slow charging response. Thus, heat transfer enhancement techniques are required to reduce charging time. Using nanoadditives is a promising approach to enhance the heat transfer and energy storage response time of materials that store heat by undergoing a reversible phase change, so-called phase change materials. In the present study, a combination of such materials enhanced with the addition of nanometer-scale graphene oxide particles (called nano-enhanced phase change materials) and a layer of a copper foam is proposed to improve the thermal performance of a shell-and-tube latent heat thermal energy storage (LHTES) unit filled with capric acid. Both graphene oxide and copper nanoparticles were tested as the nanometer-scale additives. A geometrically nonuniform layer of copper foam was placed over the hot tube inside the unit. The metal foam layer can improve heat transfer with an increase of the composite thermal conductivity. However, it suppressed the natural convection flows and could reduce heat transfer in the molten regions. Thus, a metal foam layer with a nonuniform shape can maximize thermal conductivity in conduction-dominant regions and minimize its adverse impacts on natural convection flows. The heat transfer was modeled using partial differential equations for conservations of momentum and heat. The finite element method was used to solve the partial differential equations. A backward differential formula was used to control the accuracy and convergence of the solution automatically. Mesh adaptation was applied to increase the mesh resolution at the interface between phases and improve the quality and stability of the solution. The impact of the eccentricity and porosity of the metal foam layer and the volume fraction of nanoparticles on the energy storage and the thermal performance of the LHTES unit was addressed. The layer of the metal foam notably improves the response time of the LHTES unit, and a 10% eccentricity of the porous layer toward the bottom improved the response time of the LHTES unit by 50%. The presence of nanoadditives could reduce the response time (melting time) of the LHTES unit by 12%, and copper nanoparticles were slightly better than graphene oxide particles in terms of heat transfer enhancement. The design parameters of the eccentricity, porosity, and volume fraction of nanoparticles had minimal impact on the thermal energy storage capacity of the LHTES unit, while their impact on the melting time (response time) was significant. Thus, a combination of the enhancement method could practically reduce the thermal charging time of an LHTES unit without a significant increase in its size.  相似文献   

10.
A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO–coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.  相似文献   

11.
The free convection laminar flow about vertical axis-symmetric bodies is analysed. In order to obtain a universal solution, the analysis is carried out over a vertical cone having surface irregularity of a sinusoid form, since almost all surface geometry may be represented by Fourier series. The concentration (temperature), velocity distributions and rate of mass (heat) transfer through the electrode surface are computed.  相似文献   

12.
In this paper, a fundamental practical unit, namely the wedge-shaped enclosure, is proposed as a novel and efficient latent heat storage unit for thermal energy storage. The enthalpy–porosity method that treats the solid and liquid zones as a single domain is employed. Effect of the mushy zone constant C on melting is analyzed and a suitable value is obtained by comparing the numerical results with experimental data in the literature. A series of simulations are conducted to analyze the transient melting coupled with natural convection as well as the heat transfer process. Fourteen units those have different length ratios between top and bottom of the enclosures are investigated and compared by the analysis of transient temperature fields, vertical velocity distributions, and evolution of the melting fronts. It is found that the length ratio n dramatically affects the full melting time and heat transfer intensity. An enclosure of n = 5.5, which has the shortest completion time and the highest heat transfer intensity, is determined as the optimal unit. Compared with the base geometry (n = 1), charging time of the optimal unit (n = 5.5) decreased by 32.8 %, while the heat transfer intensity increased by 45.7 %. This is a significant improvement in the field of latent heat storage.  相似文献   

13.

Numerical simulations are performed to analyze the thermal characteristics of a latent heat thermal energy storage system with phase change material embedded in highly conductive porous media. A network of finned heat pipes is also employed to enhance the heat transfer within the system. ANSYS-FLUENT 19.0 is used to create a transient multiphase computational model to simulate the thermal behavior of the storage unit. Copper foam is the porous medium used to enhance the heat transfer and is impregnated with the phase change material, potassium nitrate (KNO3). The effects of the porosity of the metal foam and the quantity of heat pipes on the thermal characteristics of storage unit have been investigated. The results indicated that increasing the quantity of the embedded heat pipes leads to drastic acceleration of both charging and discharging process. Impregnating the copper foam with potassium nitrate phase change material significantly affects the total charging and discharging times of the storage unit. It was shown that the porosity of the metal foam plays a key role in the thermal behavior of the system during the charging and discharging processes.

  相似文献   

14.
Journal of Thermal Analysis and Calorimetry - The current survey’s primary purpose is to conduct the computational modeling of laminar mixed convection heat transfer of nanofluids inside a...  相似文献   

15.

Nanofluid and coiled tubes have been employed as two passive methods for enhancing the heat transfer. In the present study, the turbulent flow of CuO–water nanofluid in helical and conical coiled tubes was numerically investigated with constant wall temperature through mixture model. The thermophysical properties of base fluid (water) were considered as temperature-dependent functions, while Brownian effects were adopted in thermal conductivity and dynamic viscosity of nanofluid. Simulation results were validated using experimental data for heat transfer coefficient and pressure drop in helical coiled tube for different Reynolds numbers. Four different geometries were simulated and compared. The first one was a conical coiled tube; the others were helical coiled tubes whose coil diameters were minimum, maximum, and median of the conical coiled tube pitch coil diameter. The velocity profiles indicated stronger secondary flow in conical coiled tube at a specified Dean number. The obtained results also showed higher heat transfer enhancement in the conical coiled tube in comparison with helical coiled tube with the same average pitch coil diameter. Moreover, the nanoparticle-induced heat transfer enhancement was more effective in conical coiled tube.

  相似文献   

16.

The main purpose of this study is numerically investigating the flow and heat transfer of nanofluid flow inside a microchannel with L-shaped porous ribs as well as studying the effect of porous media properties on the performance evaluation criterion (PEC) of the fluid. In the present paper, in addition to the pure water fluid, the effect of using water/CuO nanofluid on the PEC of microchannel was investigated. The flow was simulated in four Reynolds numbers and two different volume fractions of nanoparticles in laminar flow regime. The investigated parameters are the thermal conductivity and the porosity rate of porous medium. The results indicate that with the existence of porous ribs, the nanofluid does not have a significant effect on heat transfer increase. By using porous ribs in flow with Reynolds number of 1200, the heat transfer rate increases up to 42% and in flow with Reynolds number of 100, this rate increases by 25%.

  相似文献   

17.

A numerical analysis was carried out of mixed convection heat transfer for a laminar flow in a rectangular inclined microchannel totally filled with a water/Al2O3 nanofluid. The governing conservation equations are translated into a dimensionless form using the thermal single relaxation time and they modify the lattice Boltzmann method with double distribution functions. The viscous dissipation effects are adapted to the energy equation. The effects of nanoparticle volume fractions ? (0?≤???≤?0.04) and inclination angles γ (0°?≤?γ?≤?60°) on the flow of the nanofluid and the heat transfer are investigated. The obtained results are presented in terms of streamlines, isotherms, slip velocity, wall temperature and Nusselt number. The results show that the higher values of the volume fraction of Al2O3 and the large values of inclination angles improve the heat transfer rate.

  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - In this study, fluid flow and heat transfer in a vertical lid-driven CuO–water nanofluid filled square cavity with a flexible fin attached to its...  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - This paper combines numerical and experimental to study the heat transfer by free convection for nanofluids of molten salt within a cavity with...  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - In the present study, laminar natural convection of a non-Newtonian ferrofluid inside an elliptical porous cavity was numerically simulated in the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号